Metamath Proof Explorer


Theorem fourierdlem24

Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fourierdlem24 A π π 0 A mod 2 π 0

Proof

Step Hyp Ref Expression
1 0zd A π π 0 0 < A 0
2 pire π
3 2 renegcli π
4 iccssre π π π π
5 3 2 4 mp2an π π
6 eldifi A π π 0 A π π
7 5 6 sselid A π π 0 A
8 7 adantr A π π 0 0 < A A
9 2re 2
10 9 2 remulcli 2 π
11 10 a1i A π π 0 0 < A 2 π
12 simpr A π π 0 0 < A 0 < A
13 2pos 0 < 2
14 pipos 0 < π
15 9 2 13 14 mulgt0ii 0 < 2 π
16 15 a1i A π π 0 0 < A 0 < 2 π
17 8 11 12 16 divgt0d A π π 0 0 < A 0 < A 2 π
18 11 16 elrpd A π π 0 0 < A 2 π +
19 2 a1i A π π 0 π
20 10 a1i A π π 0 2 π
21 3 rexri π *
22 21 a1i A π π 0 π *
23 19 rexrd A π π 0 π *
24 iccleub π * π * A π π A π
25 22 23 6 24 syl3anc A π π 0 A π
26 pirp π +
27 2timesgt π + π < 2 π
28 26 27 mp1i A π π 0 π < 2 π
29 7 19 20 25 28 lelttrd A π π 0 A < 2 π
30 29 adantr A π π 0 0 < A A < 2 π
31 8 11 18 30 ltdiv1dd A π π 0 0 < A A 2 π < 2 π 2 π
32 10 recni 2 π
33 10 15 gt0ne0ii 2 π 0
34 32 33 dividi 2 π 2 π = 1
35 31 34 breqtrdi A π π 0 0 < A A 2 π < 1
36 0p1e1 0 + 1 = 1
37 35 36 breqtrrdi A π π 0 0 < A A 2 π < 0 + 1
38 btwnnz 0 0 < A 2 π A 2 π < 0 + 1 ¬ A 2 π
39 1 17 37 38 syl3anc A π π 0 0 < A ¬ A 2 π
40 simpl A π π 0 ¬ 0 < A A π π 0
41 7 adantr A π π 0 ¬ 0 < A A
42 0red A π π 0 ¬ 0 < A 0
43 simpr A π π 0 ¬ 0 < A ¬ 0 < A
44 41 42 43 nltled A π π 0 ¬ 0 < A A 0
45 eldifsni A π π 0 A 0
46 45 necomd A π π 0 0 A
47 46 adantr A π π 0 ¬ 0 < A 0 A
48 41 42 44 47 leneltd A π π 0 ¬ 0 < A A < 0
49 neg1z 1
50 49 a1i A π π 0 A < 0 1
51 33 a1i A π π 0 2 π 0
52 7 20 51 redivcld A π π 0 A 2 π
53 52 adantr A π π 0 A < 0 A 2 π
54 1red A π π 0 A < 0 1
55 7 recnd A π π 0 A
56 55 adantr A π π 0 A < 0 A
57 32 a1i A π π 0 A < 0 2 π
58 33 a1i A π π 0 A < 0 2 π 0
59 56 57 58 divnegd A π π 0 A < 0 A 2 π = A 2 π
60 7 renegcld A π π 0 A
61 60 adantr A π π 0 A < 0 A
62 10 a1i A π π 0 A < 0 2 π
63 2rp 2 +
64 rpmulcl 2 + π + 2 π +
65 63 26 64 mp2an 2 π +
66 65 a1i A π π 0 A < 0 2 π +
67 iccgelb π * π * A π π π A
68 22 23 6 67 syl3anc A π π 0 π A
69 19 7 68 lenegcon1d A π π 0 A π
70 60 19 20 69 28 lelttrd A π π 0 A < 2 π
71 70 adantr A π π 0 A < 0 A < 2 π
72 61 62 66 71 ltdiv1dd A π π 0 A < 0 A 2 π < 2 π 2 π
73 72 34 breqtrdi A π π 0 A < 0 A 2 π < 1
74 59 73 eqbrtrd A π π 0 A < 0 A 2 π < 1
75 53 54 74 ltnegcon1d A π π 0 A < 0 1 < A 2 π
76 7 adantr A π π 0 A < 0 A
77 simpr A π π 0 A < 0 A < 0
78 76 66 77 divlt0gt0d A π π 0 A < 0 A 2 π < 0
79 neg1cn 1
80 ax-1cn 1
81 79 80 addcomi - 1 + 1 = 1 + -1
82 1pneg1e0 1 + -1 = 0
83 81 82 eqtr2i 0 = - 1 + 1
84 78 83 breqtrdi A π π 0 A < 0 A 2 π < - 1 + 1
85 btwnnz 1 1 < A 2 π A 2 π < - 1 + 1 ¬ A 2 π
86 50 75 84 85 syl3anc A π π 0 A < 0 ¬ A 2 π
87 40 48 86 syl2anc A π π 0 ¬ 0 < A ¬ A 2 π
88 39 87 pm2.61dan A π π 0 ¬ A 2 π
89 65 a1i A π π 0 2 π +
90 mod0 A 2 π + A mod 2 π = 0 A 2 π
91 7 89 90 syl2anc A π π 0 A mod 2 π = 0 A 2 π
92 88 91 mtbird A π π 0 ¬ A mod 2 π = 0
93 92 neqned A π π 0 A mod 2 π 0