Metamath Proof Explorer


Theorem fourierdlem25

Description: If C is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem25.m φ M
fourierdlem25.qf φ Q : 0 M
fourierdlem25.cel φ C Q 0 Q M
fourierdlem25.cnel φ ¬ C ran Q
fourierdlem25.i I = sup k 0 ..^ M | Q k < C <
Assertion fourierdlem25 φ j 0 ..^ M C Q j Q j + 1

Proof

Step Hyp Ref Expression
1 fourierdlem25.m φ M
2 fourierdlem25.qf φ Q : 0 M
3 fourierdlem25.cel φ C Q 0 Q M
4 fourierdlem25.cnel φ ¬ C ran Q
5 fourierdlem25.i I = sup k 0 ..^ M | Q k < C <
6 ssrab2 k 0 ..^ M | Q k < C 0 ..^ M
7 ltso < Or
8 7 a1i φ < Or
9 fzofi 0 ..^ M Fin
10 ssfi 0 ..^ M Fin k 0 ..^ M | Q k < C 0 ..^ M k 0 ..^ M | Q k < C Fin
11 9 6 10 mp2an k 0 ..^ M | Q k < C Fin
12 11 a1i φ k 0 ..^ M | Q k < C Fin
13 0zd φ 0
14 1 nnzd φ M
15 1 nngt0d φ 0 < M
16 fzolb 0 0 ..^ M 0 M 0 < M
17 13 14 15 16 syl3anbrc φ 0 0 ..^ M
18 elfzofz 0 0 ..^ M 0 0 M
19 17 18 syl φ 0 0 M
20 2 19 ffvelrnd φ Q 0
21 1 nnnn0d φ M 0
22 nn0uz 0 = 0
23 21 22 eleqtrdi φ M 0
24 eluzfz2 M 0 M 0 M
25 23 24 syl φ M 0 M
26 2 25 ffvelrnd φ Q M
27 20 26 iccssred φ Q 0 Q M
28 27 3 sseldd φ C
29 20 rexrd φ Q 0 *
30 26 rexrd φ Q M *
31 iccgelb Q 0 * Q M * C Q 0 Q M Q 0 C
32 29 30 3 31 syl3anc φ Q 0 C
33 simpr φ C = Q 0 C = Q 0
34 2 ffnd φ Q Fn 0 M
35 34 adantr φ C = Q 0 Q Fn 0 M
36 19 adantr φ C = Q 0 0 0 M
37 fnfvelrn Q Fn 0 M 0 0 M Q 0 ran Q
38 35 36 37 syl2anc φ C = Q 0 Q 0 ran Q
39 33 38 eqeltrd φ C = Q 0 C ran Q
40 4 39 mtand φ ¬ C = Q 0
41 40 neqned φ C Q 0
42 20 28 32 41 leneltd φ Q 0 < C
43 fveq2 k = 0 Q k = Q 0
44 43 breq1d k = 0 Q k < C Q 0 < C
45 44 elrab 0 k 0 ..^ M | Q k < C 0 0 ..^ M Q 0 < C
46 17 42 45 sylanbrc φ 0 k 0 ..^ M | Q k < C
47 46 ne0d φ k 0 ..^ M | Q k < C
48 fzossfz 0 ..^ M 0 M
49 fzssz 0 M
50 zssre
51 49 50 sstri 0 M
52 48 51 sstri 0 ..^ M
53 6 52 sstri k 0 ..^ M | Q k < C
54 53 a1i φ k 0 ..^ M | Q k < C
55 fisupcl < Or k 0 ..^ M | Q k < C Fin k 0 ..^ M | Q k < C k 0 ..^ M | Q k < C sup k 0 ..^ M | Q k < C < k 0 ..^ M | Q k < C
56 8 12 47 54 55 syl13anc φ sup k 0 ..^ M | Q k < C < k 0 ..^ M | Q k < C
57 6 56 sseldi φ sup k 0 ..^ M | Q k < C < 0 ..^ M
58 5 57 eqeltrid φ I 0 ..^ M
59 48 58 sseldi φ I 0 M
60 2 59 ffvelrnd φ Q I
61 60 rexrd φ Q I *
62 fzofzp1 I 0 ..^ M I + 1 0 M
63 58 62 syl φ I + 1 0 M
64 2 63 ffvelrnd φ Q I + 1
65 64 rexrd φ Q I + 1 *
66 5 56 eqeltrid φ I k 0 ..^ M | Q k < C
67 fveq2 k = I Q k = Q I
68 67 breq1d k = I Q k < C Q I < C
69 68 elrab I k 0 ..^ M | Q k < C I 0 ..^ M Q I < C
70 66 69 sylib φ I 0 ..^ M Q I < C
71 70 simprd φ Q I < C
72 52 58 sseldi φ I
73 ltp1 I I < I + 1
74 id I I
75 peano2re I I + 1
76 74 75 ltnled I I < I + 1 ¬ I + 1 I
77 73 76 mpbid I ¬ I + 1 I
78 72 77 syl φ ¬ I + 1 I
79 48 49 sstri 0 ..^ M
80 6 79 sstri k 0 ..^ M | Q k < C
81 80 a1i φ Q I + 1 < C k 0 ..^ M | Q k < C
82 elrabi h k 0 ..^ M | Q k < C h 0 ..^ M
83 elfzo0le h 0 ..^ M h M
84 82 83 syl h k 0 ..^ M | Q k < C h M
85 84 adantl φ h k 0 ..^ M | Q k < C h M
86 85 ralrimiva φ h k 0 ..^ M | Q k < C h M
87 breq2 m = M h m h M
88 87 ralbidv m = M h k 0 ..^ M | Q k < C h m h k 0 ..^ M | Q k < C h M
89 88 rspcev M h k 0 ..^ M | Q k < C h M m h k 0 ..^ M | Q k < C h m
90 14 86 89 syl2anc φ m h k 0 ..^ M | Q k < C h m
91 90 adantr φ Q I + 1 < C m h k 0 ..^ M | Q k < C h m
92 elfzuz I + 1 0 M I + 1 0
93 63 92 syl φ I + 1 0
94 93 adantr φ Q I + 1 < C I + 1 0
95 14 adantr φ Q I + 1 < C M
96 51 63 sseldi φ I + 1
97 96 adantr φ Q I + 1 < C I + 1
98 95 zred φ Q I + 1 < C M
99 elfzle2 I + 1 0 M I + 1 M
100 63 99 syl φ I + 1 M
101 100 adantr φ Q I + 1 < C I + 1 M
102 simpr φ Q I + 1 < C Q I + 1 < C
103 64 adantr φ Q I + 1 < C Q I + 1
104 28 adantr φ Q I + 1 < C C
105 103 104 ltnled φ Q I + 1 < C Q I + 1 < C ¬ C Q I + 1
106 102 105 mpbid φ Q I + 1 < C ¬ C Q I + 1
107 iccleub Q 0 * Q M * C Q 0 Q M C Q M
108 29 30 3 107 syl3anc φ C Q M
109 108 adantr φ M = I + 1 C Q M
110 fveq2 M = I + 1 Q M = Q I + 1
111 110 adantl φ M = I + 1 Q M = Q I + 1
112 109 111 breqtrd φ M = I + 1 C Q I + 1
113 112 adantlr φ Q I + 1 < C M = I + 1 C Q I + 1
114 106 113 mtand φ Q I + 1 < C ¬ M = I + 1
115 114 neqned φ Q I + 1 < C M I + 1
116 97 98 101 115 leneltd φ Q I + 1 < C I + 1 < M
117 elfzo2 I + 1 0 ..^ M I + 1 0 M I + 1 < M
118 94 95 116 117 syl3anbrc φ Q I + 1 < C I + 1 0 ..^ M
119 fveq2 k = I + 1 Q k = Q I + 1
120 119 breq1d k = I + 1 Q k < C Q I + 1 < C
121 120 elrab I + 1 k 0 ..^ M | Q k < C I + 1 0 ..^ M Q I + 1 < C
122 118 102 121 sylanbrc φ Q I + 1 < C I + 1 k 0 ..^ M | Q k < C
123 suprzub k 0 ..^ M | Q k < C m h k 0 ..^ M | Q k < C h m I + 1 k 0 ..^ M | Q k < C I + 1 sup k 0 ..^ M | Q k < C <
124 81 91 122 123 syl3anc φ Q I + 1 < C I + 1 sup k 0 ..^ M | Q k < C <
125 124 5 breqtrrdi φ Q I + 1 < C I + 1 I
126 78 125 mtand φ ¬ Q I + 1 < C
127 eqcom Q I + 1 = C C = Q I + 1
128 127 biimpi Q I + 1 = C C = Q I + 1
129 128 adantl φ Q I + 1 = C C = Q I + 1
130 34 adantr φ Q I + 1 = C Q Fn 0 M
131 63 adantr φ Q I + 1 = C I + 1 0 M
132 fnfvelrn Q Fn 0 M I + 1 0 M Q I + 1 ran Q
133 130 131 132 syl2anc φ Q I + 1 = C Q I + 1 ran Q
134 129 133 eqeltrd φ Q I + 1 = C C ran Q
135 4 134 mtand φ ¬ Q I + 1 = C
136 126 135 jca φ ¬ Q I + 1 < C ¬ Q I + 1 = C
137 pm4.56 ¬ Q I + 1 < C ¬ Q I + 1 = C ¬ Q I + 1 < C Q I + 1 = C
138 136 137 sylib φ ¬ Q I + 1 < C Q I + 1 = C
139 64 28 leloed φ Q I + 1 C Q I + 1 < C Q I + 1 = C
140 138 139 mtbird φ ¬ Q I + 1 C
141 28 64 ltnled φ C < Q I + 1 ¬ Q I + 1 C
142 140 141 mpbird φ C < Q I + 1
143 61 65 28 71 142 eliood φ C Q I Q I + 1
144 fveq2 j = I Q j = Q I
145 oveq1 j = I j + 1 = I + 1
146 145 fveq2d j = I Q j + 1 = Q I + 1
147 144 146 oveq12d j = I Q j Q j + 1 = Q I Q I + 1
148 147 eleq2d j = I C Q j Q j + 1 C Q I Q I + 1
149 148 rspcev I 0 ..^ M C Q I Q I + 1 j 0 ..^ M C Q j Q j + 1
150 58 143 149 syl2anc φ j 0 ..^ M C Q j Q j + 1