Metamath Proof Explorer


Theorem fourierdlem28

Description: Derivative of ( F( X + s ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem28.1 φ F :
fourierdlem28.x φ X
fourierdlem28.a φ A
fourierdlem28.3b φ B
fourierdlem28.d D = D F X + A X + B
fourierdlem28.df φ D : X + A X + B
Assertion fourierdlem28 φ ds A B F X + s d s = s A B D X + s

Proof

Step Hyp Ref Expression
1 fourierdlem28.1 φ F :
2 fourierdlem28.x φ X
3 fourierdlem28.a φ A
4 fourierdlem28.3b φ B
5 fourierdlem28.d D = D F X + A X + B
6 fourierdlem28.df φ D : X + A X + B
7 reelprrecn
8 7 a1i φ
9 2 3 readdcld φ X + A
10 9 rexrd φ X + A *
11 10 adantr φ s A B X + A *
12 2 4 readdcld φ X + B
13 12 rexrd φ X + B *
14 13 adantr φ s A B X + B *
15 2 adantr φ s A B X
16 elioore s A B s
17 16 adantl φ s A B s
18 15 17 readdcld φ s A B X + s
19 3 adantr φ s A B A
20 19 rexrd φ s A B A *
21 4 rexrd φ B *
22 21 adantr φ s A B B *
23 simpr φ s A B s A B
24 ioogtlb A * B * s A B A < s
25 20 22 23 24 syl3anc φ s A B A < s
26 19 17 15 25 ltadd2dd φ s A B X + A < X + s
27 4 adantr φ s A B B
28 iooltub A * B * s A B s < B
29 20 22 23 28 syl3anc φ s A B s < B
30 17 27 15 29 ltadd2dd φ s A B X + s < X + B
31 11 14 18 26 30 eliood φ s A B X + s X + A X + B
32 1red φ s A B 1
33 1 adantr φ y X + A X + B F :
34 elioore y X + A X + B y
35 34 adantl φ y X + A X + B y
36 33 35 ffvelrnd φ y X + A X + B F y
37 36 recnd φ y X + A X + B F y
38 6 ffvelrnda φ y X + A X + B D y
39 15 recnd φ s A B X
40 0red φ s A B 0
41 iooretop A B topGen ran .
42 eqid TopOpen fld = TopOpen fld
43 42 tgioo2 topGen ran . = TopOpen fld 𝑡
44 41 43 eleqtri A B TopOpen fld 𝑡
45 44 a1i φ A B TopOpen fld 𝑡
46 2 recnd φ X
47 8 45 46 dvmptconst φ ds A B X d s = s A B 0
48 17 recnd φ s A B s
49 8 45 dvmptidg φ ds A B s d s = s A B 1
50 8 39 40 47 48 32 49 dvmptadd φ ds A B X + s d s = s A B 0 + 1
51 0p1e1 0 + 1 = 1
52 51 a1i φ s A B 0 + 1 = 1
53 52 mpteq2dva φ s A B 0 + 1 = s A B 1
54 50 53 eqtrd φ ds A B X + s d s = s A B 1
55 1 feqmptd φ F = y F y
56 55 reseq1d φ F X + A X + B = y F y X + A X + B
57 ioossre X + A X + B
58 57 a1i φ X + A X + B
59 58 resmptd φ y F y X + A X + B = y X + A X + B F y
60 56 59 eqtr2d φ y X + A X + B F y = F X + A X + B
61 60 oveq2d φ dy X + A X + B F y d y = D F X + A X + B
62 5 eqcomi D F X + A X + B = D
63 62 a1i φ D F X + A X + B = D
64 6 feqmptd φ D = y X + A X + B D y
65 61 63 64 3eqtrd φ dy X + A X + B F y d y = y X + A X + B D y
66 fveq2 y = X + s F y = F X + s
67 fveq2 y = X + s D y = D X + s
68 8 8 31 32 37 38 54 65 66 67 dvmptco φ ds A B F X + s d s = s A B D X + s 1
69 6 adantr φ s A B D : X + A X + B
70 69 31 ffvelrnd φ s A B D X + s
71 70 recnd φ s A B D X + s
72 71 mulid1d φ s A B D X + s 1 = D X + s
73 72 mpteq2dva φ s A B D X + s 1 = s A B D X + s
74 68 73 eqtrd φ ds A B F X + s d s = s A B D X + s