Metamath Proof Explorer


Theorem fourierdlem29

Description: Explicit function value for K applied to A . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem29.1 K=sππifs=01s2sins2
Assertion fourierdlem29 AππKA=ifA=01A2sinA2

Proof

Step Hyp Ref Expression
1 fourierdlem29.1 K=sππifs=01s2sins2
2 eqeq1 s=As=0A=0
3 id s=As=A
4 fvoveq1 s=Asins2=sinA2
5 4 oveq2d s=A2sins2=2sinA2
6 3 5 oveq12d s=As2sins2=A2sinA2
7 2 6 ifbieq2d s=Aifs=01s2sins2=ifA=01A2sinA2
8 1ex 1V
9 ovex A2sinA2V
10 8 9 ifex ifA=01A2sinA2V
11 7 1 10 fvmpt AππKA=ifA=01A2sinA2