Metamath Proof Explorer


Theorem fourierdlem29

Description: Explicit function value for K applied to A . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem29.1 K = s π π if s = 0 1 s 2 sin s 2
Assertion fourierdlem29 A π π K A = if A = 0 1 A 2 sin A 2

Proof

Step Hyp Ref Expression
1 fourierdlem29.1 K = s π π if s = 0 1 s 2 sin s 2
2 eqeq1 s = A s = 0 A = 0
3 id s = A s = A
4 fvoveq1 s = A sin s 2 = sin A 2
5 4 oveq2d s = A 2 sin s 2 = 2 sin A 2
6 3 5 oveq12d s = A s 2 sin s 2 = A 2 sin A 2
7 2 6 ifbieq2d s = A if s = 0 1 s 2 sin s 2 = if A = 0 1 A 2 sin A 2
8 1ex 1 V
9 ovex A 2 sin A 2 V
10 8 9 ifex if A = 0 1 A 2 sin A 2 V
11 7 1 10 fvmpt A π π K A = if A = 0 1 A 2 sin A 2