Metamath Proof Explorer


Theorem fourierdlem31

Description: If A is finite and for any element in A there is a number m such that a property holds for all numbers larger than m , then there is a number n such that the property holds for all numbers larger than n and for all elements in A . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem31.i i φ
fourierdlem31.r r φ
fourierdlem31.iv _ i V
fourierdlem31.a φ A Fin
fourierdlem31.exm φ i A m r m +∞ χ
fourierdlem31.m M = m | r m +∞ χ
fourierdlem31.v V = i A sup M <
fourierdlem31.n N = sup ran V <
Assertion fourierdlem31 φ n r n +∞ i A χ

Proof

Step Hyp Ref Expression
1 fourierdlem31.i i φ
2 fourierdlem31.r r φ
3 fourierdlem31.iv _ i V
4 fourierdlem31.a φ A Fin
5 fourierdlem31.exm φ i A m r m +∞ χ
6 fourierdlem31.m M = m | r m +∞ χ
7 fourierdlem31.v V = i A sup M <
8 fourierdlem31.n N = sup ran V <
9 1nn 1
10 rzal A = i A χ
11 10 ralrimivw A = r 1 +∞ i A χ
12 oveq1 n = 1 n +∞ = 1 +∞
13 12 raleqdv n = 1 r n +∞ i A χ r 1 +∞ i A χ
14 13 rspcev 1 r 1 +∞ i A χ n r n +∞ i A χ
15 9 11 14 sylancr A = n r n +∞ i A χ
16 15 adantl φ A = n r n +∞ i A χ
17 6 a1i φ i A M = m | r m +∞ χ
18 17 infeq1d φ i A sup M < = sup m | r m +∞ χ <
19 ssrab2 m | r m +∞ χ
20 nnuz = 1
21 19 20 sseqtri m | r m +∞ χ 1
22 5 r19.21bi φ i A m r m +∞ χ
23 rabn0 m | r m +∞ χ m r m +∞ χ
24 22 23 sylibr φ i A m | r m +∞ χ
25 infssuzcl m | r m +∞ χ 1 m | r m +∞ χ sup m | r m +∞ χ < m | r m +∞ χ
26 21 24 25 sylancr φ i A sup m | r m +∞ χ < m | r m +∞ χ
27 19 26 sselid φ i A sup m | r m +∞ χ <
28 18 27 eqeltrd φ i A sup M <
29 1 7 28 rnmptssd φ ran V
30 29 adantr φ ¬ A = ran V
31 ltso < Or
32 31 a1i φ ¬ A = < Or
33 mptfi A Fin i A sup M < Fin
34 4 33 syl φ i A sup M < Fin
35 7 34 eqeltrid φ V Fin
36 rnfi V Fin ran V Fin
37 35 36 syl φ ran V Fin
38 37 adantr φ ¬ A = ran V Fin
39 neqne ¬ A = A
40 n0 A i i A
41 39 40 sylib ¬ A = i i A
42 41 adantl φ ¬ A = i i A
43 nfv i ¬ A =
44 1 43 nfan i φ ¬ A =
45 3 nfrn _ i ran V
46 nfcv _ i
47 45 46 nfne i ran V
48 simpr φ i A i A
49 7 elrnmpt1 i A sup M < sup M < ran V
50 48 28 49 syl2anc φ i A sup M < ran V
51 50 ne0d φ i A ran V
52 51 ex φ i A ran V
53 52 adantr φ ¬ A = i A ran V
54 44 47 53 exlimd φ ¬ A = i i A ran V
55 42 54 mpd φ ¬ A = ran V
56 nnssre
57 30 56 sstrdi φ ¬ A = ran V
58 fisupcl < Or ran V Fin ran V ran V sup ran V < ran V
59 32 38 55 57 58 syl13anc φ ¬ A = sup ran V < ran V
60 30 59 sseldd φ ¬ A = sup ran V <
61 8 60 eqeltrid φ ¬ A = N
62 nfcv _ i
63 nfcv _ i <
64 45 62 63 nfsup _ i sup ran V <
65 8 64 nfcxfr _ i N
66 nfcv _ i .
67 nfcv _ i +∞
68 65 66 67 nfov _ i N +∞
69 68 nfcri i r N +∞
70 1 69 nfan i φ r N +∞
71 7 fvmpt2 i A sup M < V i = sup M <
72 48 28 71 syl2anc φ i A V i = sup M <
73 28 nnxrd φ i A sup M < *
74 72 73 eqeltrd φ i A V i *
75 74 adantr φ i A r N +∞ V i *
76 pnfxr +∞ *
77 76 a1i φ i A r N +∞ +∞ *
78 elioore r N +∞ r
79 78 adantl φ i A r N +∞ r
80 72 28 eqeltrd φ i A V i
81 80 nnred φ i A V i
82 81 adantr φ i A r N +∞ V i
83 ne0i i A A
84 83 adantl φ i A A
85 84 neneqd φ i A ¬ A =
86 85 61 syldan φ i A N
87 86 nnred φ i A N
88 87 adantr φ i A r N +∞ N
89 85 57 syldan φ i A ran V
90 29 56 sstrdi φ ran V
91 fimaxre2 ran V ran V Fin x y ran V y x
92 90 37 91 syl2anc φ x y ran V y x
93 92 adantr φ i A x y ran V y x
94 72 50 eqeltrd φ i A V i ran V
95 suprub ran V ran V x y ran V y x V i ran V V i sup ran V <
96 89 51 93 94 95 syl31anc φ i A V i sup ran V <
97 96 8 breqtrrdi φ i A V i N
98 97 adantr φ i A r N +∞ V i N
99 88 rexrd φ i A r N +∞ N *
100 simpr φ i A r N +∞ r N +∞
101 ioogtlb N * +∞ * r N +∞ N < r
102 99 77 100 101 syl3anc φ i A r N +∞ N < r
103 82 88 79 98 102 lelttrd φ i A r N +∞ V i < r
104 79 ltpnfd φ i A r N +∞ r < +∞
105 75 77 79 103 104 eliood φ i A r N +∞ r V i +∞
106 18 26 eqeltrd φ i A sup M < m | r m +∞ χ
107 72 106 eqeltrd φ i A V i m | r m +∞ χ
108 nfcv _ m A
109 nfrab1 _ m m | r m +∞ χ
110 6 109 nfcxfr _ m M
111 nfcv _ m
112 nfcv _ m <
113 110 111 112 nfinf _ m sup M <
114 108 113 nfmpt _ m i A sup M <
115 7 114 nfcxfr _ m V
116 nfcv _ m i
117 115 116 nffv _ m V i
118 117 109 nfel m V i m | r m +∞ χ
119 117 nfel1 m V i
120 nfcv _ m .
121 nfcv _ m +∞
122 117 120 121 nfov _ m V i +∞
123 nfv m χ
124 122 123 nfralw m r V i +∞ χ
125 119 124 nfan m V i r V i +∞ χ
126 118 125 nfbi m V i m | r m +∞ χ V i r V i +∞ χ
127 eleq1 m = V i m m | r m +∞ χ V i m | r m +∞ χ
128 eleq1 m = V i m V i
129 oveq1 m = V i m +∞ = V i +∞
130 nfcv _ r m +∞
131 nfcv _ r A
132 nfra1 r r m +∞ χ
133 nfcv _ r
134 132 133 nfrabw _ r m | r m +∞ χ
135 6 134 nfcxfr _ r M
136 nfcv _ r
137 nfcv _ r <
138 135 136 137 nfinf _ r sup M <
139 131 138 nfmpt _ r i A sup M <
140 7 139 nfcxfr _ r V
141 nfcv _ r i
142 140 141 nffv _ r V i
143 nfcv _ r .
144 nfcv _ r +∞
145 142 143 144 nfov _ r V i +∞
146 130 145 raleqf m +∞ = V i +∞ r m +∞ χ r V i +∞ χ
147 129 146 syl m = V i r m +∞ χ r V i +∞ χ
148 128 147 anbi12d m = V i m r m +∞ χ V i r V i +∞ χ
149 127 148 bibi12d m = V i m m | r m +∞ χ m r m +∞ χ V i m | r m +∞ χ V i r V i +∞ χ
150 rabid m m | r m +∞ χ m r m +∞ χ
151 117 126 149 150 vtoclgf V i V i m | r m +∞ χ V i r V i +∞ χ
152 80 151 syl φ i A V i m | r m +∞ χ V i r V i +∞ χ
153 107 152 mpbid φ i A V i r V i +∞ χ
154 153 simprd φ i A r V i +∞ χ
155 154 r19.21bi φ i A r V i +∞ χ
156 105 155 syldan φ i A r N +∞ χ
157 156 an32s φ r N +∞ i A χ
158 157 ex φ r N +∞ i A χ
159 70 158 ralrimi φ r N +∞ i A χ
160 159 ex φ r N +∞ i A χ
161 2 160 ralrimi φ r N +∞ i A χ
162 161 adantr φ ¬ A = r N +∞ i A χ
163 oveq1 n = N n +∞ = N +∞
164 nfcv _ r n +∞
165 140 nfrn _ r ran V
166 165 136 137 nfsup _ r sup ran V <
167 8 166 nfcxfr _ r N
168 167 143 144 nfov _ r N +∞
169 164 168 raleqf n +∞ = N +∞ r n +∞ i A χ r N +∞ i A χ
170 163 169 syl n = N r n +∞ i A χ r N +∞ i A χ
171 170 rspcev N r N +∞ i A χ n r n +∞ i A χ
172 61 162 171 syl2anc φ ¬ A = n r n +∞ i A χ
173 16 172 pm2.61dan φ n r n +∞ i A χ