Metamath Proof Explorer


Theorem fourierdlem32

Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem32.a φ A
fourierdlem32.b φ B
fourierdlem32.altb φ A < B
fourierdlem32.f φ F : A B cn
fourierdlem32.l φ R F lim A
fourierdlem32.c φ C
fourierdlem32.d φ D
fourierdlem32.cltd φ C < D
fourierdlem32.ss φ C D A B
fourierdlem32.y Y = if C = A R F C
fourierdlem32.j J = TopOpen fld 𝑡 A B
Assertion fourierdlem32 φ Y F C D lim C

Proof

Step Hyp Ref Expression
1 fourierdlem32.a φ A
2 fourierdlem32.b φ B
3 fourierdlem32.altb φ A < B
4 fourierdlem32.f φ F : A B cn
5 fourierdlem32.l φ R F lim A
6 fourierdlem32.c φ C
7 fourierdlem32.d φ D
8 fourierdlem32.cltd φ C < D
9 fourierdlem32.ss φ C D A B
10 fourierdlem32.y Y = if C = A R F C
11 fourierdlem32.j J = TopOpen fld 𝑡 A B
12 5 adantr φ C = A R F lim A
13 iftrue C = A if C = A R F C = R
14 10 13 eqtr2id C = A R = Y
15 14 adantl φ C = A R = Y
16 oveq2 C = A F C D lim C = F C D lim A
17 16 adantl φ C = A F C D lim C = F C D lim A
18 cncff F : A B cn F : A B
19 4 18 syl φ F : A B
20 19 adantr φ C = A F : A B
21 9 adantr φ C = A C D A B
22 ioosscn A B
23 22 a1i φ C = A A B
24 eqid TopOpen fld = TopOpen fld
25 eqid TopOpen fld 𝑡 A B A = TopOpen fld 𝑡 A B A
26 6 leidd φ C C
27 7 rexrd φ D *
28 elico2 C D * C C D C C C C < D
29 6 27 28 syl2anc φ C C D C C C C < D
30 6 26 8 29 mpbir3and φ C C D
31 30 adantr φ C = A C C D
32 24 cnfldtop TopOpen fld Top
33 ovex A B V
34 33 a1i φ C = A A B V
35 resttop TopOpen fld Top A B V TopOpen fld 𝑡 A B Top
36 32 34 35 sylancr φ C = A TopOpen fld 𝑡 A B Top
37 11 36 eqeltrid φ C = A J Top
38 mnfxr −∞ *
39 38 a1i φ x A D −∞ *
40 27 adantr φ x A D D *
41 simpr φ x A D x A D
42 1 adantr φ x A D A
43 elico2 A D * x A D x A x x < D
44 42 40 43 syl2anc φ x A D x A D x A x x < D
45 41 44 mpbid φ x A D x A x x < D
46 45 simp1d φ x A D x
47 46 mnfltd φ x A D −∞ < x
48 45 simp3d φ x A D x < D
49 39 40 46 47 48 eliood φ x A D x −∞ D
50 45 simp2d φ x A D A x
51 7 adantr φ x A D D
52 2 adantr φ x A D B
53 1 2 6 7 8 9 fourierdlem10 φ A C D B
54 53 simprd φ D B
55 54 adantr φ x A D D B
56 46 51 52 48 55 ltletrd φ x A D x < B
57 2 rexrd φ B *
58 57 adantr φ x A D B *
59 elico2 A B * x A B x A x x < B
60 42 58 59 syl2anc φ x A D x A B x A x x < B
61 46 50 56 60 mpbir3and φ x A D x A B
62 49 61 elind φ x A D x −∞ D A B
63 elinel1 x −∞ D A B x −∞ D
64 elioore x −∞ D x
65 63 64 syl x −∞ D A B x
66 65 adantl φ x −∞ D A B x
67 elinel2 x −∞ D A B x A B
68 67 adantl φ x −∞ D A B x A B
69 1 adantr φ x −∞ D A B A
70 57 adantr φ x −∞ D A B B *
71 69 70 59 syl2anc φ x −∞ D A B x A B x A x x < B
72 68 71 mpbid φ x −∞ D A B x A x x < B
73 72 simp2d φ x −∞ D A B A x
74 63 adantl φ x −∞ D A B x −∞ D
75 27 adantr φ x −∞ D A B D *
76 elioo2 −∞ * D * x −∞ D x −∞ < x x < D
77 38 75 76 sylancr φ x −∞ D A B x −∞ D x −∞ < x x < D
78 74 77 mpbid φ x −∞ D A B x −∞ < x x < D
79 78 simp3d φ x −∞ D A B x < D
80 69 75 43 syl2anc φ x −∞ D A B x A D x A x x < D
81 66 73 79 80 mpbir3and φ x −∞ D A B x A D
82 62 81 impbida φ x A D x −∞ D A B
83 82 eqrdv φ A D = −∞ D A B
84 retop topGen ran . Top
85 84 a1i φ topGen ran . Top
86 33 a1i φ A B V
87 iooretop −∞ D topGen ran .
88 87 a1i φ −∞ D topGen ran .
89 elrestr topGen ran . Top A B V −∞ D topGen ran . −∞ D A B topGen ran . 𝑡 A B
90 85 86 88 89 syl3anc φ −∞ D A B topGen ran . 𝑡 A B
91 83 90 eqeltrd φ A D topGen ran . 𝑡 A B
92 91 adantr φ C = A A D topGen ran . 𝑡 A B
93 simpr φ C = A C = A
94 93 oveq1d φ C = A C D = A D
95 11 a1i φ J = TopOpen fld 𝑡 A B
96 32 a1i φ TopOpen fld Top
97 icossre A B * A B
98 1 57 97 syl2anc φ A B
99 reex V
100 99 a1i φ V
101 restabs TopOpen fld Top A B V TopOpen fld 𝑡 𝑡 A B = TopOpen fld 𝑡 A B
102 96 98 100 101 syl3anc φ TopOpen fld 𝑡 𝑡 A B = TopOpen fld 𝑡 A B
103 24 tgioo2 topGen ran . = TopOpen fld 𝑡
104 103 eqcomi TopOpen fld 𝑡 = topGen ran .
105 104 oveq1i TopOpen fld 𝑡 𝑡 A B = topGen ran . 𝑡 A B
106 105 a1i φ TopOpen fld 𝑡 𝑡 A B = topGen ran . 𝑡 A B
107 95 102 106 3eqtr2d φ J = topGen ran . 𝑡 A B
108 107 adantr φ C = A J = topGen ran . 𝑡 A B
109 92 94 108 3eltr4d φ C = A C D J
110 isopn3i J Top C D J int J C D = C D
111 37 109 110 syl2anc φ C = A int J C D = C D
112 31 111 eleqtrrd φ C = A C int J C D
113 id C = A C = A
114 113 eqcomd C = A A = C
115 114 adantl φ C = A A = C
116 uncom A B A = A A B
117 1 rexrd φ A *
118 snunioo A * B * A < B A A B = A B
119 117 57 3 118 syl3anc φ A A B = A B
120 116 119 syl5eq φ A B A = A B
121 120 adantr φ C = A A B A = A B
122 121 oveq2d φ C = A TopOpen fld 𝑡 A B A = TopOpen fld 𝑡 A B
123 122 11 eqtr4di φ C = A TopOpen fld 𝑡 A B A = J
124 123 fveq2d φ C = A int TopOpen fld 𝑡 A B A = int J
125 uncom C D A = A C D
126 sneq C = A C = A
127 126 eqcomd C = A A = C
128 127 uneq1d C = A A C D = C C D
129 125 128 syl5eq C = A C D A = C C D
130 6 rexrd φ C *
131 snunioo C * D * C < D C C D = C D
132 130 27 8 131 syl3anc φ C C D = C D
133 129 132 sylan9eqr φ C = A C D A = C D
134 124 133 fveq12d φ C = A int TopOpen fld 𝑡 A B A C D A = int J C D
135 112 115 134 3eltr4d φ C = A A int TopOpen fld 𝑡 A B A C D A
136 20 21 23 24 25 135 limcres φ C = A F C D lim A = F lim A
137 17 136 eqtr2d φ C = A F lim A = F C D lim C
138 12 15 137 3eltr3d φ C = A Y F C D lim C
139 limcresi F lim C F C D lim C
140 iffalse ¬ C = A if C = A R F C = F C
141 10 140 syl5eq ¬ C = A Y = F C
142 141 adantl φ ¬ C = A Y = F C
143 ssid
144 143 a1i φ
145 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
146 unicntop = TopOpen fld
147 146 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
148 32 147 ax-mp TopOpen fld 𝑡 = TopOpen fld
149 148 eqcomi TopOpen fld = TopOpen fld 𝑡
150 24 145 149 cncfcn A B A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
151 22 144 150 sylancr φ A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
152 4 151 eleqtrd φ F TopOpen fld 𝑡 A B Cn TopOpen fld
153 24 cnfldtopon TopOpen fld TopOn
154 resttopon TopOpen fld TopOn A B TopOpen fld 𝑡 A B TopOn A B
155 153 22 154 mp2an TopOpen fld 𝑡 A B TopOn A B
156 cncnp TopOpen fld 𝑡 A B TopOn A B TopOpen fld TopOn F TopOpen fld 𝑡 A B Cn TopOpen fld F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
157 155 153 156 mp2an F TopOpen fld 𝑡 A B Cn TopOpen fld F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
158 152 157 sylib φ F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
159 158 simprd φ x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
160 159 adantr φ ¬ C = A x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
161 117 adantr φ ¬ C = A A *
162 57 adantr φ ¬ C = A B *
163 6 adantr φ ¬ C = A C
164 1 adantr φ ¬ C = A A
165 53 simpld φ A C
166 165 adantr φ ¬ C = A A C
167 113 eqcoms A = C C = A
168 167 necon3bi ¬ C = A A C
169 168 adantl φ ¬ C = A A C
170 169 necomd φ ¬ C = A C A
171 164 163 166 170 leneltd φ ¬ C = A A < C
172 6 7 2 8 54 ltletrd φ C < B
173 172 adantr φ ¬ C = A C < B
174 161 162 163 171 173 eliood φ ¬ C = A C A B
175 fveq2 x = C TopOpen fld 𝑡 A B CnP TopOpen fld x = TopOpen fld 𝑡 A B CnP TopOpen fld C
176 175 eleq2d x = C F TopOpen fld 𝑡 A B CnP TopOpen fld x F TopOpen fld 𝑡 A B CnP TopOpen fld C
177 176 rspccva x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x C A B F TopOpen fld 𝑡 A B CnP TopOpen fld C
178 160 174 177 syl2anc φ ¬ C = A F TopOpen fld 𝑡 A B CnP TopOpen fld C
179 24 145 cnplimc A B C A B F TopOpen fld 𝑡 A B CnP TopOpen fld C F : A B F C F lim C
180 22 174 179 sylancr φ ¬ C = A F TopOpen fld 𝑡 A B CnP TopOpen fld C F : A B F C F lim C
181 178 180 mpbid φ ¬ C = A F : A B F C F lim C
182 181 simprd φ ¬ C = A F C F lim C
183 142 182 eqeltrd φ ¬ C = A Y F lim C
184 139 183 sselid φ ¬ C = A Y F C D lim C
185 138 184 pm2.61dan φ Y F C D lim C