Metamath Proof Explorer


Theorem fourierdlem34

Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem34.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem34.m φ M
fourierdlem34.q φ Q P M
Assertion fourierdlem34 φ Q : 0 M 1-1

Proof

Step Hyp Ref Expression
1 fourierdlem34.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem34.m φ M
3 fourierdlem34.q φ Q P M
4 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
5 2 4 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 3 5 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 6 simpld φ Q 0 M
8 elmapi Q 0 M Q : 0 M
9 7 8 syl φ Q : 0 M
10 simplr φ i 0 M j 0 M Q i = Q j ¬ i = j Q i = Q j
11 9 ffvelrnda φ i 0 M Q i
12 11 ad2antrr φ i 0 M j 0 M i < j Q i
13 9 ffvelrnda φ k 0 M Q k
14 13 ad4ant14 φ i 0 M i < j k 0 M Q k
15 14 adantllr φ i 0 M j 0 M i < j k 0 M Q k
16 eleq1w i = k i 0 ..^ M k 0 ..^ M
17 16 anbi2d i = k φ i 0 ..^ M φ k 0 ..^ M
18 fveq2 i = k Q i = Q k
19 oveq1 i = k i + 1 = k + 1
20 19 fveq2d i = k Q i + 1 = Q k + 1
21 18 20 breq12d i = k Q i < Q i + 1 Q k < Q k + 1
22 17 21 imbi12d i = k φ i 0 ..^ M Q i < Q i + 1 φ k 0 ..^ M Q k < Q k + 1
23 6 simprrd φ i 0 ..^ M Q i < Q i + 1
24 23 r19.21bi φ i 0 ..^ M Q i < Q i + 1
25 22 24 chvarvv φ k 0 ..^ M Q k < Q k + 1
26 25 ad4ant14 φ i 0 M i < j k 0 ..^ M Q k < Q k + 1
27 26 adantllr φ i 0 M j 0 M i < j k 0 ..^ M Q k < Q k + 1
28 simpllr φ i 0 M j 0 M i < j i 0 M
29 simplr φ i 0 M j 0 M i < j j 0 M
30 simpr φ i 0 M j 0 M i < j i < j
31 15 27 28 29 30 monoords φ i 0 M j 0 M i < j Q i < Q j
32 12 31 ltned φ i 0 M j 0 M i < j Q i Q j
33 32 neneqd φ i 0 M j 0 M i < j ¬ Q i = Q j
34 33 adantlr φ i 0 M j 0 M ¬ i = j i < j ¬ Q i = Q j
35 simpll φ i 0 M j 0 M ¬ i = j ¬ i < j φ i 0 M j 0 M
36 elfzelz j 0 M j
37 36 zred j 0 M j
38 37 ad3antlr φ i 0 M j 0 M ¬ i = j ¬ i < j j
39 elfzelz i 0 M i
40 39 zred i 0 M i
41 40 ad4antlr φ i 0 M j 0 M ¬ i = j ¬ i < j i
42 neqne ¬ i = j i j
43 42 necomd ¬ i = j j i
44 43 ad2antlr φ i 0 M j 0 M ¬ i = j ¬ i < j j i
45 simpr φ i 0 M j 0 M ¬ i = j ¬ i < j ¬ i < j
46 38 41 44 45 lttri5d φ i 0 M j 0 M ¬ i = j ¬ i < j j < i
47 9 ffvelrnda φ j 0 M Q j
48 47 adantr φ j 0 M j < i Q j
49 48 adantllr φ i 0 M j 0 M j < i Q j
50 simp-4l φ i 0 M j 0 M j < i k 0 M φ
51 50 13 sylancom φ i 0 M j 0 M j < i k 0 M Q k
52 simp-4l φ i 0 M j 0 M j < i k 0 ..^ M φ
53 52 25 sylancom φ i 0 M j 0 M j < i k 0 ..^ M Q k < Q k + 1
54 simplr φ i 0 M j 0 M j < i j 0 M
55 simpllr φ i 0 M j 0 M j < i i 0 M
56 simpr φ i 0 M j 0 M j < i j < i
57 51 53 54 55 56 monoords φ i 0 M j 0 M j < i Q j < Q i
58 49 57 gtned φ i 0 M j 0 M j < i Q i Q j
59 58 neneqd φ i 0 M j 0 M j < i ¬ Q i = Q j
60 35 46 59 syl2anc φ i 0 M j 0 M ¬ i = j ¬ i < j ¬ Q i = Q j
61 34 60 pm2.61dan φ i 0 M j 0 M ¬ i = j ¬ Q i = Q j
62 61 adantlr φ i 0 M j 0 M Q i = Q j ¬ i = j ¬ Q i = Q j
63 10 62 condan φ i 0 M j 0 M Q i = Q j i = j
64 63 ex φ i 0 M j 0 M Q i = Q j i = j
65 64 ralrimiva φ i 0 M j 0 M Q i = Q j i = j
66 65 ralrimiva φ i 0 M j 0 M Q i = Q j i = j
67 dff13 Q : 0 M 1-1 Q : 0 M i 0 M j 0 M Q i = Q j i = j
68 9 66 67 sylanbrc φ Q : 0 M 1-1