Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem34.p |
|
2 |
|
fourierdlem34.m |
|
3 |
|
fourierdlem34.q |
|
4 |
1
|
fourierdlem2 |
|
5 |
2 4
|
syl |
|
6 |
3 5
|
mpbid |
|
7 |
6
|
simpld |
|
8 |
|
elmapi |
|
9 |
7 8
|
syl |
|
10 |
|
simplr |
|
11 |
9
|
ffvelrnda |
|
12 |
11
|
ad2antrr |
|
13 |
9
|
ffvelrnda |
|
14 |
13
|
ad4ant14 |
|
15 |
14
|
adantllr |
|
16 |
|
eleq1w |
|
17 |
16
|
anbi2d |
|
18 |
|
fveq2 |
|
19 |
|
oveq1 |
|
20 |
19
|
fveq2d |
|
21 |
18 20
|
breq12d |
|
22 |
17 21
|
imbi12d |
|
23 |
6
|
simprrd |
|
24 |
23
|
r19.21bi |
|
25 |
22 24
|
chvarvv |
|
26 |
25
|
ad4ant14 |
|
27 |
26
|
adantllr |
|
28 |
|
simpllr |
|
29 |
|
simplr |
|
30 |
|
simpr |
|
31 |
15 27 28 29 30
|
monoords |
|
32 |
12 31
|
ltned |
|
33 |
32
|
neneqd |
|
34 |
33
|
adantlr |
|
35 |
|
simpll |
|
36 |
|
elfzelz |
|
37 |
36
|
zred |
|
38 |
37
|
ad3antlr |
|
39 |
|
elfzelz |
|
40 |
39
|
zred |
|
41 |
40
|
ad4antlr |
|
42 |
|
neqne |
|
43 |
42
|
necomd |
|
44 |
43
|
ad2antlr |
|
45 |
|
simpr |
|
46 |
38 41 44 45
|
lttri5d |
|
47 |
9
|
ffvelrnda |
|
48 |
47
|
adantr |
|
49 |
48
|
adantllr |
|
50 |
|
simp-4l |
|
51 |
50 13
|
sylancom |
|
52 |
|
simp-4l |
|
53 |
52 25
|
sylancom |
|
54 |
|
simplr |
|
55 |
|
simpllr |
|
56 |
|
simpr |
|
57 |
51 53 54 55 56
|
monoords |
|
58 |
49 57
|
gtned |
|
59 |
58
|
neneqd |
|
60 |
35 46 59
|
syl2anc |
|
61 |
34 60
|
pm2.61dan |
|
62 |
61
|
adantlr |
|
63 |
10 62
|
condan |
|
64 |
63
|
ex |
|
65 |
64
|
ralrimiva |
|
66 |
65
|
ralrimiva |
|
67 |
|
dff13 |
|
68 |
9 66 67
|
sylanbrc |
|