Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem35.a |
|
2 |
|
fourierdlem35.b |
|
3 |
|
fourierdlem35.altb |
|
4 |
|
fourierdlem35.t |
|
5 |
|
fourierdlem35.5 |
|
6 |
|
fourierdlem35.i |
|
7 |
|
fourierdlem35.j |
|
8 |
|
fourierdlem35.iel |
|
9 |
|
fourierdlem35.jel |
|
10 |
|
neqne |
|
11 |
1
|
adantr |
|
12 |
2
|
adantr |
|
13 |
3
|
adantr |
|
14 |
5
|
adantr |
|
15 |
6
|
adantr |
|
16 |
7
|
adantr |
|
17 |
|
simpr |
|
18 |
|
iocssicc |
|
19 |
18 8
|
sselid |
|
20 |
19
|
adantr |
|
21 |
18 9
|
sselid |
|
22 |
21
|
adantr |
|
23 |
11 12 13 4 14 15 16 17 20 22
|
fourierdlem6 |
|
24 |
23
|
orcd |
|
25 |
24
|
adantlr |
|
26 |
|
simpll |
|
27 |
7
|
zred |
|
28 |
26 27
|
syl |
|
29 |
6
|
zred |
|
30 |
26 29
|
syl |
|
31 |
|
id |
|
32 |
31
|
necomd |
|
33 |
32
|
ad2antlr |
|
34 |
|
simpr |
|
35 |
28 30 33 34
|
lttri5d |
|
36 |
1
|
adantr |
|
37 |
2
|
adantr |
|
38 |
3
|
adantr |
|
39 |
5
|
adantr |
|
40 |
7
|
adantr |
|
41 |
6
|
adantr |
|
42 |
|
simpr |
|
43 |
21
|
adantr |
|
44 |
19
|
adantr |
|
45 |
36 37 38 4 39 40 41 42 43 44
|
fourierdlem6 |
|
46 |
45
|
olcd |
|
47 |
26 35 46
|
syl2anc |
|
48 |
25 47
|
pm2.61dan |
|
49 |
10 48
|
sylan2 |
|
50 |
1
|
rexrd |
|
51 |
2
|
rexrd |
|
52 |
|
iocleub |
|
53 |
50 51 9 52
|
syl3anc |
|
54 |
53
|
adantr |
|
55 |
1
|
adantr |
|
56 |
2 1
|
resubcld |
|
57 |
4 56
|
eqeltrid |
|
58 |
29 57
|
remulcld |
|
59 |
5 58
|
readdcld |
|
60 |
59
|
adantr |
|
61 |
57
|
adantr |
|
62 |
|
iocgtlb |
|
63 |
50 51 8 62
|
syl3anc |
|
64 |
63
|
adantr |
|
65 |
55 60 61 64
|
ltadd1dd |
|
66 |
4
|
eqcomi |
|
67 |
2
|
recnd |
|
68 |
1
|
recnd |
|
69 |
57
|
recnd |
|
70 |
67 68 69
|
subaddd |
|
71 |
66 70
|
mpbii |
|
72 |
71
|
eqcomd |
|
73 |
72
|
adantr |
|
74 |
5
|
recnd |
|
75 |
58
|
recnd |
|
76 |
74 75 69
|
addassd |
|
77 |
76
|
adantr |
|
78 |
29
|
recnd |
|
79 |
78 69
|
adddirp1d |
|
80 |
79
|
eqcomd |
|
81 |
80
|
oveq2d |
|
82 |
81
|
adantr |
|
83 |
|
oveq1 |
|
84 |
83
|
eqcomd |
|
85 |
84
|
oveq2d |
|
86 |
85
|
adantl |
|
87 |
77 82 86
|
3eqtrrd |
|
88 |
65 73 87
|
3brtr4d |
|
89 |
2
|
adantr |
|
90 |
27 57
|
remulcld |
|
91 |
5 90
|
readdcld |
|
92 |
91
|
adantr |
|
93 |
89 92
|
ltnled |
|
94 |
88 93
|
mpbid |
|
95 |
54 94
|
pm2.65da |
|
96 |
|
iocleub |
|
97 |
50 51 8 96
|
syl3anc |
|
98 |
97
|
adantr |
|
99 |
1
|
adantr |
|
100 |
91
|
adantr |
|
101 |
57
|
adantr |
|
102 |
|
iocgtlb |
|
103 |
50 51 9 102
|
syl3anc |
|
104 |
103
|
adantr |
|
105 |
99 100 101 104
|
ltadd1dd |
|
106 |
72
|
adantr |
|
107 |
90
|
recnd |
|
108 |
74 107 69
|
addassd |
|
109 |
108
|
adantr |
|
110 |
27
|
recnd |
|
111 |
110 69
|
adddirp1d |
|
112 |
111
|
eqcomd |
|
113 |
112
|
oveq2d |
|
114 |
113
|
adantr |
|
115 |
|
oveq1 |
|
116 |
115
|
eqcomd |
|
117 |
116
|
oveq2d |
|
118 |
117
|
adantl |
|
119 |
109 114 118
|
3eqtrrd |
|
120 |
105 106 119
|
3brtr4d |
|
121 |
2
|
adantr |
|
122 |
59
|
adantr |
|
123 |
121 122
|
ltnled |
|
124 |
120 123
|
mpbid |
|
125 |
98 124
|
pm2.65da |
|
126 |
95 125
|
jca |
|
127 |
126
|
adantr |
|
128 |
|
pm4.56 |
|
129 |
127 128
|
sylib |
|
130 |
49 129
|
condan |
|