Metamath Proof Explorer


Theorem fourierdlem35

Description: There is a single point in ( A (,] B ) that's distant from X a multiple integer of T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem35.a φ A
fourierdlem35.b φ B
fourierdlem35.altb φ A < B
fourierdlem35.t T = B A
fourierdlem35.5 φ X
fourierdlem35.i φ I
fourierdlem35.j φ J
fourierdlem35.iel φ X + I T A B
fourierdlem35.jel φ X + J T A B
Assertion fourierdlem35 φ I = J

Proof

Step Hyp Ref Expression
1 fourierdlem35.a φ A
2 fourierdlem35.b φ B
3 fourierdlem35.altb φ A < B
4 fourierdlem35.t T = B A
5 fourierdlem35.5 φ X
6 fourierdlem35.i φ I
7 fourierdlem35.j φ J
8 fourierdlem35.iel φ X + I T A B
9 fourierdlem35.jel φ X + J T A B
10 neqne ¬ I = J I J
11 1 adantr φ I < J A
12 2 adantr φ I < J B
13 3 adantr φ I < J A < B
14 5 adantr φ I < J X
15 6 adantr φ I < J I
16 7 adantr φ I < J J
17 simpr φ I < J I < J
18 iocssicc A B A B
19 18 8 sselid φ X + I T A B
20 19 adantr φ I < J X + I T A B
21 18 9 sselid φ X + J T A B
22 21 adantr φ I < J X + J T A B
23 11 12 13 4 14 15 16 17 20 22 fourierdlem6 φ I < J J = I + 1
24 23 orcd φ I < J J = I + 1 I = J + 1
25 24 adantlr φ I J I < J J = I + 1 I = J + 1
26 simpll φ I J ¬ I < J φ
27 7 zred φ J
28 26 27 syl φ I J ¬ I < J J
29 6 zred φ I
30 26 29 syl φ I J ¬ I < J I
31 id I J I J
32 31 necomd I J J I
33 32 ad2antlr φ I J ¬ I < J J I
34 simpr φ I J ¬ I < J ¬ I < J
35 28 30 33 34 lttri5d φ I J ¬ I < J J < I
36 1 adantr φ J < I A
37 2 adantr φ J < I B
38 3 adantr φ J < I A < B
39 5 adantr φ J < I X
40 7 adantr φ J < I J
41 6 adantr φ J < I I
42 simpr φ J < I J < I
43 21 adantr φ J < I X + J T A B
44 19 adantr φ J < I X + I T A B
45 36 37 38 4 39 40 41 42 43 44 fourierdlem6 φ J < I I = J + 1
46 45 olcd φ J < I J = I + 1 I = J + 1
47 26 35 46 syl2anc φ I J ¬ I < J J = I + 1 I = J + 1
48 25 47 pm2.61dan φ I J J = I + 1 I = J + 1
49 10 48 sylan2 φ ¬ I = J J = I + 1 I = J + 1
50 1 rexrd φ A *
51 2 rexrd φ B *
52 iocleub A * B * X + J T A B X + J T B
53 50 51 9 52 syl3anc φ X + J T B
54 53 adantr φ J = I + 1 X + J T B
55 1 adantr φ J = I + 1 A
56 2 1 resubcld φ B A
57 4 56 eqeltrid φ T
58 29 57 remulcld φ I T
59 5 58 readdcld φ X + I T
60 59 adantr φ J = I + 1 X + I T
61 57 adantr φ J = I + 1 T
62 iocgtlb A * B * X + I T A B A < X + I T
63 50 51 8 62 syl3anc φ A < X + I T
64 63 adantr φ J = I + 1 A < X + I T
65 55 60 61 64 ltadd1dd φ J = I + 1 A + T < X + I T + T
66 4 eqcomi B A = T
67 2 recnd φ B
68 1 recnd φ A
69 57 recnd φ T
70 67 68 69 subaddd φ B A = T A + T = B
71 66 70 mpbii φ A + T = B
72 71 eqcomd φ B = A + T
73 72 adantr φ J = I + 1 B = A + T
74 5 recnd φ X
75 58 recnd φ I T
76 74 75 69 addassd φ X + I T + T = X + I T + T
77 76 adantr φ J = I + 1 X + I T + T = X + I T + T
78 29 recnd φ I
79 78 69 adddirp1d φ I + 1 T = I T + T
80 79 eqcomd φ I T + T = I + 1 T
81 80 oveq2d φ X + I T + T = X + I + 1 T
82 81 adantr φ J = I + 1 X + I T + T = X + I + 1 T
83 oveq1 J = I + 1 J T = I + 1 T
84 83 eqcomd J = I + 1 I + 1 T = J T
85 84 oveq2d J = I + 1 X + I + 1 T = X + J T
86 85 adantl φ J = I + 1 X + I + 1 T = X + J T
87 77 82 86 3eqtrrd φ J = I + 1 X + J T = X + I T + T
88 65 73 87 3brtr4d φ J = I + 1 B < X + J T
89 2 adantr φ J = I + 1 B
90 27 57 remulcld φ J T
91 5 90 readdcld φ X + J T
92 91 adantr φ J = I + 1 X + J T
93 89 92 ltnled φ J = I + 1 B < X + J T ¬ X + J T B
94 88 93 mpbid φ J = I + 1 ¬ X + J T B
95 54 94 pm2.65da φ ¬ J = I + 1
96 iocleub A * B * X + I T A B X + I T B
97 50 51 8 96 syl3anc φ X + I T B
98 97 adantr φ I = J + 1 X + I T B
99 1 adantr φ I = J + 1 A
100 91 adantr φ I = J + 1 X + J T
101 57 adantr φ I = J + 1 T
102 iocgtlb A * B * X + J T A B A < X + J T
103 50 51 9 102 syl3anc φ A < X + J T
104 103 adantr φ I = J + 1 A < X + J T
105 99 100 101 104 ltadd1dd φ I = J + 1 A + T < X + J T + T
106 72 adantr φ I = J + 1 B = A + T
107 90 recnd φ J T
108 74 107 69 addassd φ X + J T + T = X + J T + T
109 108 adantr φ I = J + 1 X + J T + T = X + J T + T
110 27 recnd φ J
111 110 69 adddirp1d φ J + 1 T = J T + T
112 111 eqcomd φ J T + T = J + 1 T
113 112 oveq2d φ X + J T + T = X + J + 1 T
114 113 adantr φ I = J + 1 X + J T + T = X + J + 1 T
115 oveq1 I = J + 1 I T = J + 1 T
116 115 eqcomd I = J + 1 J + 1 T = I T
117 116 oveq2d I = J + 1 X + J + 1 T = X + I T
118 117 adantl φ I = J + 1 X + J + 1 T = X + I T
119 109 114 118 3eqtrrd φ I = J + 1 X + I T = X + J T + T
120 105 106 119 3brtr4d φ I = J + 1 B < X + I T
121 2 adantr φ I = J + 1 B
122 59 adantr φ I = J + 1 X + I T
123 121 122 ltnled φ I = J + 1 B < X + I T ¬ X + I T B
124 120 123 mpbid φ I = J + 1 ¬ X + I T B
125 98 124 pm2.65da φ ¬ I = J + 1
126 95 125 jca φ ¬ J = I + 1 ¬ I = J + 1
127 126 adantr φ ¬ I = J ¬ J = I + 1 ¬ I = J + 1
128 pm4.56 ¬ J = I + 1 ¬ I = J + 1 ¬ J = I + 1 I = J + 1
129 127 128 sylib φ ¬ I = J ¬ J = I + 1 I = J + 1
130 49 129 condan φ I = J