Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem40.f |
|
2 |
|
fourierdlem40.a |
|
3 |
|
fourierdlem40.b |
|
4 |
|
fourierdlem40.x |
|
5 |
|
fourierdlem40.nxelab |
|
6 |
|
fourierdlem40.fcn |
|
7 |
|
fourierdlem40.y |
|
8 |
|
fourierdlem40.w |
|
9 |
|
fourierdlem40.h |
|
10 |
9
|
reseq1i |
|
11 |
10
|
a1i |
|
12 |
|
pire |
|
13 |
12
|
renegcli |
|
14 |
13
|
a1i |
|
15 |
12
|
a1i |
|
16 |
|
elioore |
|
17 |
16
|
adantl |
|
18 |
13
|
a1i |
|
19 |
12
|
a1i |
|
20 |
18 19
|
iccssred |
|
21 |
20 2
|
sseldd |
|
22 |
21
|
adantr |
|
23 |
13 12
|
elicc2i |
|
24 |
23
|
simp2bi |
|
25 |
2 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
22
|
rexrd |
|
28 |
20 3
|
sseldd |
|
29 |
28
|
rexrd |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
|
ioogtlb |
|
33 |
27 30 31 32
|
syl3anc |
|
34 |
14 22 17 26 33
|
lelttrd |
|
35 |
14 17 34
|
ltled |
|
36 |
28
|
adantr |
|
37 |
|
iooltub |
|
38 |
27 30 31 37
|
syl3anc |
|
39 |
13 12
|
elicc2i |
|
40 |
39
|
simp3bi |
|
41 |
3 40
|
syl |
|
42 |
41
|
adantr |
|
43 |
17 36 15 38 42
|
ltletrd |
|
44 |
17 15 43
|
ltled |
|
45 |
14 15 17 35 44
|
eliccd |
|
46 |
45
|
ex |
|
47 |
46
|
ssrdv |
|
48 |
47
|
resmptd |
|
49 |
|
eleq1 |
|
50 |
49
|
biimpac |
|
51 |
50
|
adantll |
|
52 |
5
|
ad2antrr |
|
53 |
51 52
|
pm2.65da |
|
54 |
53
|
iffalsed |
|
55 |
1
|
adantr |
|
56 |
4
|
adantr |
|
57 |
56 17
|
readdcld |
|
58 |
55 57
|
ffvelrnd |
|
59 |
7 8
|
ifcld |
|
60 |
59
|
adantr |
|
61 |
58 60
|
resubcld |
|
62 |
61
|
recnd |
|
63 |
17
|
recnd |
|
64 |
53
|
neqned |
|
65 |
62 63 64
|
divrecd |
|
66 |
54 65
|
eqtrd |
|
67 |
66
|
mpteq2dva |
|
68 |
11 48 67
|
3eqtrd |
|
69 |
58
|
recnd |
|
70 |
60
|
recnd |
|
71 |
69 70
|
negsubd |
|
72 |
71
|
eqcomd |
|
73 |
72
|
mpteq2dva |
|
74 |
21 4
|
readdcld |
|
75 |
74
|
rexrd |
|
76 |
75
|
adantr |
|
77 |
28 4
|
readdcld |
|
78 |
77
|
rexrd |
|
79 |
78
|
adantr |
|
80 |
21
|
recnd |
|
81 |
4
|
recnd |
|
82 |
80 81
|
addcomd |
|
83 |
82
|
adantr |
|
84 |
22 17 56 33
|
ltadd2dd |
|
85 |
83 84
|
eqbrtrd |
|
86 |
17 36 56 38
|
ltadd2dd |
|
87 |
28
|
recnd |
|
88 |
81 87
|
addcomd |
|
89 |
88
|
adantr |
|
90 |
86 89
|
breqtrd |
|
91 |
76 79 57 85 90
|
eliood |
|
92 |
|
fvres |
|
93 |
91 92
|
syl |
|
94 |
93
|
eqcomd |
|
95 |
94
|
mpteq2dva |
|
96 |
|
ioosscn |
|
97 |
96
|
a1i |
|
98 |
|
ioosscn |
|
99 |
98
|
a1i |
|
100 |
97 6 99 81 91
|
fourierdlem23 |
|
101 |
95 100
|
eqeltrd |
|
102 |
|
0red |
|
103 |
21
|
ad2antrr |
|
104 |
16
|
adantl |
|
105 |
|
simplr |
|
106 |
33
|
adantlr |
|
107 |
102 103 104 105 106
|
lelttrd |
|
108 |
107
|
iftrued |
|
109 |
108
|
negeqd |
|
110 |
109
|
mpteq2dva |
|
111 |
7
|
renegcld |
|
112 |
111
|
recnd |
|
113 |
|
ssid |
|
114 |
113
|
a1i |
|
115 |
99 112 114
|
constcncfg |
|
116 |
115
|
adantr |
|
117 |
110 116
|
eqeltrd |
|
118 |
21
|
rexrd |
|
119 |
118
|
ad2antrr |
|
120 |
29
|
ad2antrr |
|
121 |
|
0red |
|
122 |
|
simpr |
|
123 |
21
|
adantr |
|
124 |
|
0red |
|
125 |
123 124
|
ltnled |
|
126 |
122 125
|
mpbird |
|
127 |
126
|
adantr |
|
128 |
|
simpr |
|
129 |
|
0red |
|
130 |
28
|
adantr |
|
131 |
129 130
|
ltnled |
|
132 |
128 131
|
mpbird |
|
133 |
132
|
adantlr |
|
134 |
119 120 121 127 133
|
eliood |
|
135 |
5
|
ad2antrr |
|
136 |
134 135
|
condan |
|
137 |
16
|
adantl |
|
138 |
|
0red |
|
139 |
28
|
ad2antrr |
|
140 |
38
|
adantlr |
|
141 |
|
simplr |
|
142 |
137 139 138 140 141
|
ltletrd |
|
143 |
137 138 142
|
ltnsymd |
|
144 |
143
|
iffalsed |
|
145 |
144
|
negeqd |
|
146 |
145
|
mpteq2dva |
|
147 |
8
|
recnd |
|
148 |
147
|
negcld |
|
149 |
99 148 114
|
constcncfg |
|
150 |
149
|
adantr |
|
151 |
146 150
|
eqeltrd |
|
152 |
136 151
|
syldan |
|
153 |
117 152
|
pm2.61dan |
|
154 |
101 153
|
addcncf |
|
155 |
73 154
|
eqeltrd |
|
156 |
|
eqid |
|
157 |
|
1cnd |
|
158 |
156
|
cdivcncf |
|
159 |
157 158
|
syl |
|
160 |
|
velsn |
|
161 |
53 160
|
sylnibr |
|
162 |
63 161
|
eldifd |
|
163 |
162
|
ralrimiva |
|
164 |
|
dfss3 |
|
165 |
163 164
|
sylibr |
|
166 |
17 64
|
rereccld |
|
167 |
166
|
recnd |
|
168 |
156 159 165 114 167
|
cncfmptssg |
|
169 |
155 168
|
mulcncf |
|
170 |
68 169
|
eqeltrd |
|