Metamath Proof Explorer


Theorem fourierdlem40

Description: H is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem40.f φ F :
fourierdlem40.a φ A π π
fourierdlem40.b φ B π π
fourierdlem40.x φ X
fourierdlem40.nxelab φ ¬ 0 A B
fourierdlem40.fcn φ F A + X B + X : A + X B + X cn
fourierdlem40.y φ Y
fourierdlem40.w φ W
fourierdlem40.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
Assertion fourierdlem40 φ H A B : A B cn

Proof

Step Hyp Ref Expression
1 fourierdlem40.f φ F :
2 fourierdlem40.a φ A π π
3 fourierdlem40.b φ B π π
4 fourierdlem40.x φ X
5 fourierdlem40.nxelab φ ¬ 0 A B
6 fourierdlem40.fcn φ F A + X B + X : A + X B + X cn
7 fourierdlem40.y φ Y
8 fourierdlem40.w φ W
9 fourierdlem40.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
10 9 reseq1i H A B = s π π if s = 0 0 F X + s if 0 < s Y W s A B
11 10 a1i φ H A B = s π π if s = 0 0 F X + s if 0 < s Y W s A B
12 pire π
13 12 renegcli π
14 13 a1i φ s A B π
15 12 a1i φ s A B π
16 elioore s A B s
17 16 adantl φ s A B s
18 13 a1i φ π
19 12 a1i φ π
20 18 19 iccssred φ π π
21 20 2 sseldd φ A
22 21 adantr φ s A B A
23 13 12 elicc2i A π π A π A A π
24 23 simp2bi A π π π A
25 2 24 syl φ π A
26 25 adantr φ s A B π A
27 22 rexrd φ s A B A *
28 20 3 sseldd φ B
29 28 rexrd φ B *
30 29 adantr φ s A B B *
31 simpr φ s A B s A B
32 ioogtlb A * B * s A B A < s
33 27 30 31 32 syl3anc φ s A B A < s
34 14 22 17 26 33 lelttrd φ s A B π < s
35 14 17 34 ltled φ s A B π s
36 28 adantr φ s A B B
37 iooltub A * B * s A B s < B
38 27 30 31 37 syl3anc φ s A B s < B
39 13 12 elicc2i B π π B π B B π
40 39 simp3bi B π π B π
41 3 40 syl φ B π
42 41 adantr φ s A B B π
43 17 36 15 38 42 ltletrd φ s A B s < π
44 17 15 43 ltled φ s A B s π
45 14 15 17 35 44 eliccd φ s A B s π π
46 45 ex φ s A B s π π
47 46 ssrdv φ A B π π
48 47 resmptd φ s π π if s = 0 0 F X + s if 0 < s Y W s A B = s A B if s = 0 0 F X + s if 0 < s Y W s
49 eleq1 s = 0 s A B 0 A B
50 49 biimpac s A B s = 0 0 A B
51 50 adantll φ s A B s = 0 0 A B
52 5 ad2antrr φ s A B s = 0 ¬ 0 A B
53 51 52 pm2.65da φ s A B ¬ s = 0
54 53 iffalsed φ s A B if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
55 1 adantr φ s A B F :
56 4 adantr φ s A B X
57 56 17 readdcld φ s A B X + s
58 55 57 ffvelrnd φ s A B F X + s
59 7 8 ifcld φ if 0 < s Y W
60 59 adantr φ s A B if 0 < s Y W
61 58 60 resubcld φ s A B F X + s if 0 < s Y W
62 61 recnd φ s A B F X + s if 0 < s Y W
63 17 recnd φ s A B s
64 53 neqned φ s A B s 0
65 62 63 64 divrecd φ s A B F X + s if 0 < s Y W s = F X + s if 0 < s Y W 1 s
66 54 65 eqtrd φ s A B if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W 1 s
67 66 mpteq2dva φ s A B if s = 0 0 F X + s if 0 < s Y W s = s A B F X + s if 0 < s Y W 1 s
68 11 48 67 3eqtrd φ H A B = s A B F X + s if 0 < s Y W 1 s
69 58 recnd φ s A B F X + s
70 60 recnd φ s A B if 0 < s Y W
71 69 70 negsubd φ s A B F X + s + if 0 < s Y W = F X + s if 0 < s Y W
72 71 eqcomd φ s A B F X + s if 0 < s Y W = F X + s + if 0 < s Y W
73 72 mpteq2dva φ s A B F X + s if 0 < s Y W = s A B F X + s + if 0 < s Y W
74 21 4 readdcld φ A + X
75 74 rexrd φ A + X *
76 75 adantr φ s A B A + X *
77 28 4 readdcld φ B + X
78 77 rexrd φ B + X *
79 78 adantr φ s A B B + X *
80 21 recnd φ A
81 4 recnd φ X
82 80 81 addcomd φ A + X = X + A
83 82 adantr φ s A B A + X = X + A
84 22 17 56 33 ltadd2dd φ s A B X + A < X + s
85 83 84 eqbrtrd φ s A B A + X < X + s
86 17 36 56 38 ltadd2dd φ s A B X + s < X + B
87 28 recnd φ B
88 81 87 addcomd φ X + B = B + X
89 88 adantr φ s A B X + B = B + X
90 86 89 breqtrd φ s A B X + s < B + X
91 76 79 57 85 90 eliood φ s A B X + s A + X B + X
92 fvres X + s A + X B + X F A + X B + X X + s = F X + s
93 91 92 syl φ s A B F A + X B + X X + s = F X + s
94 93 eqcomd φ s A B F X + s = F A + X B + X X + s
95 94 mpteq2dva φ s A B F X + s = s A B F A + X B + X X + s
96 ioosscn A + X B + X
97 96 a1i φ A + X B + X
98 ioosscn A B
99 98 a1i φ A B
100 97 6 99 81 91 fourierdlem23 φ s A B F A + X B + X X + s : A B cn
101 95 100 eqeltrd φ s A B F X + s : A B cn
102 0red φ 0 A s A B 0
103 21 ad2antrr φ 0 A s A B A
104 16 adantl φ 0 A s A B s
105 simplr φ 0 A s A B 0 A
106 33 adantlr φ 0 A s A B A < s
107 102 103 104 105 106 lelttrd φ 0 A s A B 0 < s
108 107 iftrued φ 0 A s A B if 0 < s Y W = Y
109 108 negeqd φ 0 A s A B if 0 < s Y W = Y
110 109 mpteq2dva φ 0 A s A B if 0 < s Y W = s A B Y
111 7 renegcld φ Y
112 111 recnd φ Y
113 ssid
114 113 a1i φ
115 99 112 114 constcncfg φ s A B Y : A B cn
116 115 adantr φ 0 A s A B Y : A B cn
117 110 116 eqeltrd φ 0 A s A B if 0 < s Y W : A B cn
118 21 rexrd φ A *
119 118 ad2antrr φ ¬ 0 A ¬ B 0 A *
120 29 ad2antrr φ ¬ 0 A ¬ B 0 B *
121 0red φ ¬ 0 A ¬ B 0 0
122 simpr φ ¬ 0 A ¬ 0 A
123 21 adantr φ ¬ 0 A A
124 0red φ ¬ 0 A 0
125 123 124 ltnled φ ¬ 0 A A < 0 ¬ 0 A
126 122 125 mpbird φ ¬ 0 A A < 0
127 126 adantr φ ¬ 0 A ¬ B 0 A < 0
128 simpr φ ¬ B 0 ¬ B 0
129 0red φ ¬ B 0 0
130 28 adantr φ ¬ B 0 B
131 129 130 ltnled φ ¬ B 0 0 < B ¬ B 0
132 128 131 mpbird φ ¬ B 0 0 < B
133 132 adantlr φ ¬ 0 A ¬ B 0 0 < B
134 119 120 121 127 133 eliood φ ¬ 0 A ¬ B 0 0 A B
135 5 ad2antrr φ ¬ 0 A ¬ B 0 ¬ 0 A B
136 134 135 condan φ ¬ 0 A B 0
137 16 adantl φ B 0 s A B s
138 0red φ B 0 s A B 0
139 28 ad2antrr φ B 0 s A B B
140 38 adantlr φ B 0 s A B s < B
141 simplr φ B 0 s A B B 0
142 137 139 138 140 141 ltletrd φ B 0 s A B s < 0
143 137 138 142 ltnsymd φ B 0 s A B ¬ 0 < s
144 143 iffalsed φ B 0 s A B if 0 < s Y W = W
145 144 negeqd φ B 0 s A B if 0 < s Y W = W
146 145 mpteq2dva φ B 0 s A B if 0 < s Y W = s A B W
147 8 recnd φ W
148 147 negcld φ W
149 99 148 114 constcncfg φ s A B W : A B cn
150 149 adantr φ B 0 s A B W : A B cn
151 146 150 eqeltrd φ B 0 s A B if 0 < s Y W : A B cn
152 136 151 syldan φ ¬ 0 A s A B if 0 < s Y W : A B cn
153 117 152 pm2.61dan φ s A B if 0 < s Y W : A B cn
154 101 153 addcncf φ s A B F X + s + if 0 < s Y W : A B cn
155 73 154 eqeltrd φ s A B F X + s if 0 < s Y W : A B cn
156 eqid s 0 1 s = s 0 1 s
157 1cnd φ 1
158 156 cdivcncf 1 s 0 1 s : 0 cn
159 157 158 syl φ s 0 1 s : 0 cn
160 velsn s 0 s = 0
161 53 160 sylnibr φ s A B ¬ s 0
162 63 161 eldifd φ s A B s 0
163 162 ralrimiva φ s A B s 0
164 dfss3 A B 0 s A B s 0
165 163 164 sylibr φ A B 0
166 17 64 rereccld φ s A B 1 s
167 166 recnd φ s A B 1 s
168 156 159 165 114 167 cncfmptssg φ s A B 1 s : A B cn
169 155 168 mulcncf φ s A B F X + s if 0 < s Y W 1 s : A B cn
170 68 169 eqeltrd φ H A B : A B cn