Metamath Proof Explorer


Theorem fourierdlem43

Description: K is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem43.1 K = s π π if s = 0 1 s 2 sin s 2
Assertion fourierdlem43 K : π π

Proof

Step Hyp Ref Expression
1 fourierdlem43.1 K = s π π if s = 0 1 s 2 sin s 2
2 1red s π π s = 0 1
3 pire π
4 3 a1i s π π π
5 4 renegcld s π π π
6 id s π π s π π
7 eliccre π π s π π s
8 5 4 6 7 syl3anc s π π s
9 8 adantr s π π ¬ s = 0 s
10 2re 2
11 10 a1i s π π ¬ s = 0 2
12 9 rehalfcld s π π ¬ s = 0 s 2
13 12 resincld s π π ¬ s = 0 sin s 2
14 11 13 remulcld s π π ¬ s = 0 2 sin s 2
15 2cnd s π π ¬ s = 0 2
16 13 recnd s π π ¬ s = 0 sin s 2
17 2ne0 2 0
18 17 a1i s π π ¬ s = 0 2 0
19 0xr 0 *
20 19 a1i s π π 0 < s 0 *
21 10 3 remulcli 2 π
22 21 rexri 2 π *
23 22 a1i s π π 0 < s 2 π *
24 8 adantr s π π 0 < s s
25 simpr s π π 0 < s 0 < s
26 21 a1i s π π 2 π
27 5 rexrd s π π π *
28 4 rexrd s π π π *
29 iccleub π * π * s π π s π
30 27 28 6 29 syl3anc s π π s π
31 pirp π +
32 2timesgt π + π < 2 π
33 31 32 ax-mp π < 2 π
34 33 a1i s π π π < 2 π
35 8 4 26 30 34 lelttrd s π π s < 2 π
36 35 adantr s π π 0 < s s < 2 π
37 20 23 24 25 36 eliood s π π 0 < s s 0 2 π
38 sinaover2ne0 s 0 2 π sin s 2 0
39 37 38 syl s π π 0 < s sin s 2 0
40 39 adantlr s π π ¬ s = 0 0 < s sin s 2 0
41 8 ad2antrr s π π ¬ s = 0 ¬ 0 < s s
42 iccgelb π * π * s π π π s
43 27 28 6 42 syl3anc s π π π s
44 43 ad2antrr s π π ¬ s = 0 ¬ 0 < s π s
45 0red s π π ¬ s = 0 ¬ 0 < s 0
46 neqne ¬ s = 0 s 0
47 46 ad2antlr s π π ¬ s = 0 ¬ 0 < s s 0
48 simpr s π π ¬ s = 0 ¬ 0 < s ¬ 0 < s
49 41 45 47 48 lttri5d s π π ¬ s = 0 ¬ 0 < s s < 0
50 5 ad2antrr s π π ¬ s = 0 ¬ 0 < s π
51 elico2 π 0 * s π 0 s π s s < 0
52 50 19 51 sylancl s π π ¬ s = 0 ¬ 0 < s s π 0 s π s s < 0
53 41 44 49 52 mpbir3and s π π ¬ s = 0 ¬ 0 < s s π 0
54 3 renegcli π
55 elicore π s π 0 s
56 54 55 mpan s π 0 s
57 56 recnd s π 0 s
58 2cnd s π 0 2
59 17 a1i s π 0 2 0
60 57 58 59 divnegd s π 0 s 2 = s 2
61 60 eqcomd s π 0 s 2 = s 2
62 61 fveq2d s π 0 sin s 2 = sin s 2
63 62 negeqd s π 0 sin s 2 = sin s 2
64 57 halfcld s π 0 s 2
65 sinneg s 2 sin s 2 = sin s 2
66 64 65 syl s π 0 sin s 2 = sin s 2
67 66 negeqd s π 0 sin s 2 = sin s 2
68 64 sincld s π 0 sin s 2
69 68 negnegd s π 0 sin s 2 = sin s 2
70 63 67 69 3eqtrd s π 0 sin s 2 = sin s 2
71 57 negcld s π 0 s
72 71 halfcld s π 0 s 2
73 72 sincld s π 0 sin s 2
74 19 a1i s π 0 0 *
75 22 a1i s π 0 2 π *
76 56 renegcld s π 0 s
77 54 a1i s π 0 π
78 77 rexrd s π 0 π *
79 id s π 0 s π 0
80 icoltub π * 0 * s π 0 s < 0
81 78 74 79 80 syl3anc s π 0 s < 0
82 56 lt0neg1d s π 0 s < 0 0 < s
83 81 82 mpbid s π 0 0 < s
84 3 a1i s π 0 π
85 21 a1i s π 0 2 π
86 icogelb π * 0 * s π 0 π s
87 78 74 79 86 syl3anc s π 0 π s
88 84 56 87 lenegcon1d s π 0 s π
89 33 a1i s π 0 π < 2 π
90 76 84 85 88 89 lelttrd s π 0 s < 2 π
91 74 75 76 83 90 eliood s π 0 s 0 2 π
92 sinaover2ne0 s 0 2 π sin s 2 0
93 91 92 syl s π 0 sin s 2 0
94 73 93 negne0d s π 0 sin s 2 0
95 70 94 eqnetrrd s π 0 sin s 2 0
96 53 95 syl s π π ¬ s = 0 ¬ 0 < s sin s 2 0
97 40 96 pm2.61dan s π π ¬ s = 0 sin s 2 0
98 15 16 18 97 mulne0d s π π ¬ s = 0 2 sin s 2 0
99 9 14 98 redivcld s π π ¬ s = 0 s 2 sin s 2
100 2 99 ifclda s π π if s = 0 1 s 2 sin s 2
101 1 100 fmpti K : π π