Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem47.ibl |
|
2 |
|
fourierdlem47.iblmul |
|
3 |
|
fourierdlem47.f |
|
4 |
|
fourierdlem47.g |
|
5 |
|
fourierdlem47.absg |
|
6 |
|
fourierdlem47.a |
|
7 |
|
fourierdlem47.x |
|
8 |
|
fourierdlem47.c |
|
9 |
|
fourierdlem47.y |
|
10 |
|
fourierdlem47.z |
|
11 |
|
fourierdlem47.e |
|
12 |
|
fourierdlem47.b |
|
13 |
|
fourierdlem47.absb |
|
14 |
|
fourierdlem47.d |
|
15 |
|
fourierdlem47.absd |
|
16 |
|
fourierdlem47.m |
|
17 |
6
|
abscld |
|
18 |
7 17
|
eqeltrid |
|
19 |
8
|
abscld |
|
20 |
9 19
|
eqeltrid |
|
21 |
18 20
|
readdcld |
|
22 |
3
|
abscld |
|
23 |
3 1
|
iblabs |
|
24 |
22 23
|
itgrecl |
|
25 |
10 24
|
eqeltrid |
|
26 |
21 25
|
readdcld |
|
27 |
11
|
rpred |
|
28 |
11
|
rpne0d |
|
29 |
26 27 28
|
redivcld |
|
30 |
|
1red |
|
31 |
29 30
|
readdcld |
|
32 |
31
|
flcld |
|
33 |
|
0red |
|
34 |
|
reflcl |
|
35 |
31 34
|
syl |
|
36 |
|
0lt1 |
|
37 |
36
|
a1i |
|
38 |
6
|
absge0d |
|
39 |
38 7
|
breqtrrdi |
|
40 |
8
|
absge0d |
|
41 |
40 9
|
breqtrrdi |
|
42 |
18 20 39 41
|
addge0d |
|
43 |
3
|
absge0d |
|
44 |
23 22 43
|
itgge0 |
|
45 |
44 10
|
breqtrrdi |
|
46 |
21 25 42 45
|
addge0d |
|
47 |
26 11 46
|
divge0d |
|
48 |
|
flge0nn0 |
|
49 |
29 47 48
|
syl2anc |
|
50 |
|
nn0addge1 |
|
51 |
30 49 50
|
syl2anc |
|
52 |
|
1z |
|
53 |
|
fladdz |
|
54 |
29 52 53
|
sylancl |
|
55 |
49
|
nn0cnd |
|
56 |
30
|
recnd |
|
57 |
55 56
|
addcomd |
|
58 |
54 57
|
eqtr2d |
|
59 |
51 58
|
breqtrd |
|
60 |
33 30 35 37 59
|
ltletrd |
|
61 |
|
elnnz |
|
62 |
32 60 61
|
sylanbrc |
|
63 |
62
|
peano2nnd |
|
64 |
16 63
|
eqeltrid |
|
65 |
|
elioore |
|
66 |
65 2
|
sylan2 |
|
67 |
3
|
adantlr |
|
68 |
|
simpll |
|
69 |
|
simpr |
|
70 |
65
|
ad2antlr |
|
71 |
70
|
recnd |
|
72 |
68 69 71 4
|
syl21anc |
|
73 |
6
|
adantr |
|
74 |
8
|
adantr |
|
75 |
|
eqid |
|
76 |
11
|
adantr |
|
77 |
65
|
adantl |
|
78 |
7
|
eqcomi |
|
79 |
9
|
eqcomi |
|
80 |
78 79
|
oveq12i |
|
81 |
80
|
oveq1i |
|
82 |
17
|
adantr |
|
83 |
19
|
adantr |
|
84 |
82 83
|
readdcld |
|
85 |
72
|
negcld |
|
86 |
67 85
|
mulcld |
|
87 |
86 66
|
itgcl |
|
88 |
87
|
abscld |
|
89 |
84 88
|
readdcld |
|
90 |
81 89
|
eqeltrrid |
|
91 |
27
|
adantr |
|
92 |
28
|
adantr |
|
93 |
90 91 92
|
redivcld |
|
94 |
|
1red |
|
95 |
93 94
|
readdcld |
|
96 |
7 82
|
eqeltrid |
|
97 |
9 83
|
eqeltrid |
|
98 |
96 97
|
readdcld |
|
99 |
25
|
adantr |
|
100 |
98 99
|
readdcld |
|
101 |
100 91 92
|
redivcld |
|
102 |
101 94
|
readdcld |
|
103 |
102 34
|
syl |
|
104 |
103 94
|
readdcld |
|
105 |
16 104
|
eqeltrid |
|
106 |
86
|
abscld |
|
107 |
86 66
|
iblabs |
|
108 |
106 107
|
itgrecl |
|
109 |
86 66
|
itgabs |
|
110 |
23
|
adantr |
|
111 |
67
|
abscld |
|
112 |
67 85
|
absmuld |
|
113 |
85
|
abscld |
|
114 |
|
1red |
|
115 |
67
|
absge0d |
|
116 |
|
recn |
|
117 |
116 4
|
sylan2 |
|
118 |
117
|
absnegd |
|
119 |
118 5
|
eqbrtrd |
|
120 |
68 69 70 119
|
syl21anc |
|
121 |
113 114 111 115 120
|
lemul2ad |
|
122 |
111
|
recnd |
|
123 |
122
|
mulid1d |
|
124 |
121 123
|
breqtrd |
|
125 |
112 124
|
eqbrtrd |
|
126 |
107 110 106 111 125
|
itgle |
|
127 |
126 10
|
breqtrrdi |
|
128 |
88 108 99 109 127
|
letrd |
|
129 |
88 99 98 128
|
leadd2dd |
|
130 |
90 100 76 129
|
lediv1dd |
|
131 |
|
flltp1 |
|
132 |
101 131
|
syl |
|
133 |
101 52 53
|
sylancl |
|
134 |
132 133
|
breqtrrd |
|
135 |
93 101 103 130 134
|
lelttrd |
|
136 |
93 103 94 135
|
ltadd1dd |
|
137 |
136 16
|
breqtrrdi |
|
138 |
105
|
rexrd |
|
139 |
|
pnfxr |
|
140 |
139
|
a1i |
|
141 |
|
simpr |
|
142 |
|
ioogtlb |
|
143 |
138 140 141 142
|
syl3anc |
|
144 |
95 105 77 137 143
|
lttrd |
|
145 |
95 77 144
|
ltled |
|
146 |
77
|
recnd |
|
147 |
146 12
|
syldan |
|
148 |
65 13
|
sylan2 |
|
149 |
146 14
|
syldan |
|
150 |
65 15
|
sylan2 |
|
151 |
66 67 72 73 7 74 9 75 76 77 145 147 148 149 150
|
fourierdlem30 |
|
152 |
151
|
ralrimiva |
|
153 |
|
oveq1 |
|
154 |
153
|
raleqdv |
|
155 |
154
|
rspcev |
|
156 |
64 152 155
|
syl2anc |
|