Metamath Proof Explorer


Theorem fourierdlem48

Description: The given periodic function F has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem48.a φ A
fourierdlem48.b φ B
fourierdlem48.altb φ A < B
fourierdlem48.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem48.t T = B A
fourierdlem48.m φ M
fourierdlem48.q φ Q P M
fourierdlem48.f φ F : D
fourierdlem48.dper φ x D k x + k T D
fourierdlem48.per φ x D k F x + k T = F x
fourierdlem48.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem48.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem48.x φ X
fourierdlem48.z Z = x B x T T
fourierdlem48.e E = x x + Z x
fourierdlem48.ch χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
Assertion fourierdlem48 φ F X +∞ lim X

Proof

Step Hyp Ref Expression
1 fourierdlem48.a φ A
2 fourierdlem48.b φ B
3 fourierdlem48.altb φ A < B
4 fourierdlem48.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
5 fourierdlem48.t T = B A
6 fourierdlem48.m φ M
7 fourierdlem48.q φ Q P M
8 fourierdlem48.f φ F : D
9 fourierdlem48.dper φ x D k x + k T D
10 fourierdlem48.per φ x D k F x + k T = F x
11 fourierdlem48.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
12 fourierdlem48.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
13 fourierdlem48.x φ X
14 fourierdlem48.z Z = x B x T T
15 fourierdlem48.e E = x x + Z x
16 fourierdlem48.ch χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
17 simpl φ E X = B φ
18 0zd φ 0
19 6 nnzd φ M
20 6 nngt0d φ 0 < M
21 fzolb 0 0 ..^ M 0 M 0 < M
22 18 19 20 21 syl3anbrc φ 0 0 ..^ M
23 22 adantr φ E X = B 0 0 ..^ M
24 2 13 resubcld φ B X
25 2 1 resubcld φ B A
26 5 25 eqeltrid φ T
27 1 2 posdifd φ A < B 0 < B A
28 3 27 mpbid φ 0 < B A
29 28 5 breqtrrdi φ 0 < T
30 29 gt0ne0d φ T 0
31 24 26 30 redivcld φ B X T
32 31 adantr φ E X = B B X T
33 32 flcld φ E X = B B X T
34 1zzd φ E X = B 1
35 33 34 zsubcld φ E X = B B X T 1
36 id E X = B E X = B
37 5 a1i E X = B T = B A
38 36 37 oveq12d E X = B E X T = B B A
39 2 recnd φ B
40 1 recnd φ A
41 39 40 nncand φ B B A = A
42 38 41 sylan9eqr φ E X = B E X T = A
43 4 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
44 6 43 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
45 7 44 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
46 45 simpld φ Q 0 M
47 elmapi Q 0 M Q : 0 M
48 46 47 syl φ Q : 0 M
49 6 nnnn0d φ M 0
50 nn0uz 0 = 0
51 49 50 eleqtrdi φ M 0
52 eluzfz1 M 0 0 0 M
53 51 52 syl φ 0 0 M
54 48 53 ffvelcdmd φ Q 0
55 54 rexrd φ Q 0 *
56 1zzd φ 1
57 0le1 0 1
58 57 a1i φ 0 1
59 6 nnge1d φ 1 M
60 18 19 56 58 59 elfzd φ 1 0 M
61 48 60 ffvelcdmd φ Q 1
62 61 rexrd φ Q 1 *
63 1 rexrd φ A *
64 45 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
65 64 simplld φ Q 0 = A
66 1 leidd φ A A
67 65 66 eqbrtrd φ Q 0 A
68 65 eqcomd φ A = Q 0
69 0re 0
70 eleq1 i = 0 i 0 ..^ M 0 0 ..^ M
71 70 anbi2d i = 0 φ i 0 ..^ M φ 0 0 ..^ M
72 fveq2 i = 0 Q i = Q 0
73 oveq1 i = 0 i + 1 = 0 + 1
74 73 fveq2d i = 0 Q i + 1 = Q 0 + 1
75 72 74 breq12d i = 0 Q i < Q i + 1 Q 0 < Q 0 + 1
76 71 75 imbi12d i = 0 φ i 0 ..^ M Q i < Q i + 1 φ 0 0 ..^ M Q 0 < Q 0 + 1
77 45 simprrd φ i 0 ..^ M Q i < Q i + 1
78 77 r19.21bi φ i 0 ..^ M Q i < Q i + 1
79 76 78 vtoclg 0 φ 0 0 ..^ M Q 0 < Q 0 + 1
80 69 79 ax-mp φ 0 0 ..^ M Q 0 < Q 0 + 1
81 22 80 mpdan φ Q 0 < Q 0 + 1
82 1e0p1 1 = 0 + 1
83 82 fveq2i Q 1 = Q 0 + 1
84 81 83 breqtrrdi φ Q 0 < Q 1
85 68 84 eqbrtrd φ A < Q 1
86 55 62 63 67 85 elicod φ A Q 0 Q 1
87 83 oveq2i Q 0 Q 1 = Q 0 Q 0 + 1
88 86 87 eleqtrdi φ A Q 0 Q 0 + 1
89 88 adantr φ E X = B A Q 0 Q 0 + 1
90 42 89 eqeltrd φ E X = B E X T Q 0 Q 0 + 1
91 15 a1i φ E = x x + Z x
92 id x = X x = X
93 fveq2 x = X Z x = Z X
94 92 93 oveq12d x = X x + Z x = X + Z X
95 94 adantl φ x = X x + Z x = X + Z X
96 14 a1i φ Z = x B x T T
97 oveq2 x = X B x = B X
98 97 oveq1d x = X B x T = B X T
99 98 fveq2d x = X B x T = B X T
100 99 oveq1d x = X B x T T = B X T T
101 100 adantl φ x = X B x T T = B X T T
102 31 flcld φ B X T
103 102 zred φ B X T
104 103 26 remulcld φ B X T T
105 96 101 13 104 fvmptd φ Z X = B X T T
106 105 104 eqeltrd φ Z X
107 13 106 readdcld φ X + Z X
108 91 95 13 107 fvmptd φ E X = X + Z X
109 105 oveq2d φ X + Z X = X + B X T T
110 108 109 eqtrd φ E X = X + B X T T
111 110 oveq1d φ E X T = X + B X T T - T
112 13 recnd φ X
113 104 recnd φ B X T T
114 26 recnd φ T
115 112 113 114 addsubassd φ X + B X T T - T = X + B X T T - T
116 102 zcnd φ B X T
117 116 114 mulsubfacd φ B X T T T = B X T 1 T
118 117 oveq2d φ X + B X T T - T = X + B X T 1 T
119 111 115 118 3eqtrd φ E X T = X + B X T 1 T
120 119 adantr φ E X = B E X T = X + B X T 1 T
121 oveq1 k = B X T 1 k T = B X T 1 T
122 121 oveq2d k = B X T 1 X + k T = X + B X T 1 T
123 122 eqeq2d k = B X T 1 E X T = X + k T E X T = X + B X T 1 T
124 123 anbi2d k = B X T 1 E X T Q 0 Q 0 + 1 E X T = X + k T E X T Q 0 Q 0 + 1 E X T = X + B X T 1 T
125 124 rspcev B X T 1 E X T Q 0 Q 0 + 1 E X T = X + B X T 1 T k E X T Q 0 Q 0 + 1 E X T = X + k T
126 35 90 120 125 syl12anc φ E X = B k E X T Q 0 Q 0 + 1 E X T = X + k T
127 72 74 oveq12d i = 0 Q i Q i + 1 = Q 0 Q 0 + 1
128 127 eleq2d i = 0 E X T Q i Q i + 1 E X T Q 0 Q 0 + 1
129 128 anbi1d i = 0 E X T Q i Q i + 1 E X T = X + k T E X T Q 0 Q 0 + 1 E X T = X + k T
130 129 rexbidv i = 0 k E X T Q i Q i + 1 E X T = X + k T k E X T Q 0 Q 0 + 1 E X T = X + k T
131 130 rspcev 0 0 ..^ M k E X T Q 0 Q 0 + 1 E X T = X + k T i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
132 23 126 131 syl2anc φ E X = B i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
133 ovex E X T V
134 eleq1 y = E X T y Q i Q i + 1 E X T Q i Q i + 1
135 eqeq1 y = E X T y = X + k T E X T = X + k T
136 134 135 anbi12d y = E X T y Q i Q i + 1 y = X + k T E X T Q i Q i + 1 E X T = X + k T
137 136 2rexbidv y = E X T i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
138 137 anbi2d y = E X T φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
139 138 imbi1d y = E X T φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T F X +∞ lim X
140 simpr φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T
141 nfv i φ
142 nfre1 i i 0 ..^ M k y Q i Q i + 1 y = X + k T
143 141 142 nfan i φ i 0 ..^ M k y Q i Q i + 1 y = X + k T
144 nfv k φ
145 nfcv _ k 0 ..^ M
146 nfre1 k k y Q i Q i + 1 y = X + k T
147 145 146 nfrexw k i 0 ..^ M k y Q i Q i + 1 y = X + k T
148 144 147 nfan k φ i 0 ..^ M k y Q i Q i + 1 y = X + k T
149 simp1 φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ
150 simp2l φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M
151 simp3l φ i 0 ..^ M k y Q i Q i + 1 y = X + k T y Q i Q i + 1
152 149 150 151 jca31 φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M y Q i Q i + 1
153 simp2r φ i 0 ..^ M k y Q i Q i + 1 y = X + k T k
154 simp3r φ i 0 ..^ M k y Q i Q i + 1 y = X + k T y = X + k T
155 16 biimpi χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
156 155 simplld χ φ i 0 ..^ M y Q i Q i + 1
157 156 simplld χ φ
158 frel F : D Rel F
159 resindm Rel F F X +∞ dom F = F X +∞
160 159 eqcomd Rel F F X +∞ = F X +∞ dom F
161 157 8 158 160 4syl χ F X +∞ = F X +∞ dom F
162 fdm F : D dom F = D
163 157 8 162 3syl χ dom F = D
164 163 ineq2d χ X +∞ dom F = X +∞ D
165 164 reseq2d χ F X +∞ dom F = F X +∞ D
166 161 165 eqtrd χ F X +∞ = F X +∞ D
167 166 oveq1d χ F X +∞ lim X = F X +∞ D lim X
168 157 8 syl χ F : D
169 ax-resscn
170 169 a1i χ
171 168 170 fssd χ F : D
172 inss2 X +∞ D D
173 172 a1i χ X +∞ D D
174 171 173 fssresd χ F X +∞ D : X +∞ D
175 pnfxr +∞ *
176 175 a1i χ +∞ *
177 156 simplrd χ i 0 ..^ M
178 48 adantr φ i 0 ..^ M Q : 0 M
179 fzofzp1 i 0 ..^ M i + 1 0 M
180 179 adantl φ i 0 ..^ M i + 1 0 M
181 178 180 ffvelcdmd φ i 0 ..^ M Q i + 1
182 157 177 181 syl2anc χ Q i + 1
183 155 simplrd χ k
184 183 zred χ k
185 157 26 syl χ T
186 184 185 remulcld χ k T
187 182 186 resubcld χ Q i + 1 k T
188 187 rexrd χ Q i + 1 k T *
189 187 ltpnfd χ Q i + 1 k T < +∞
190 188 176 189 xrltled χ Q i + 1 k T +∞
191 iooss2 +∞ * Q i + 1 k T +∞ X Q i + 1 k T X +∞
192 176 190 191 syl2anc χ X Q i + 1 k T X +∞
193 183 adantr χ w X Q i + 1 k T k
194 193 zcnd χ w X Q i + 1 k T k
195 185 recnd χ T
196 195 adantr χ w X Q i + 1 k T T
197 194 196 mulneg1d χ w X Q i + 1 k T k T = k T
198 197 oveq2d χ w X Q i + 1 k T w + k T + k T = w + k T + k T
199 elioore w X Q i + 1 k T w
200 199 recnd w X Q i + 1 k T w
201 200 adantl χ w X Q i + 1 k T w
202 194 196 mulcld χ w X Q i + 1 k T k T
203 201 202 addcld χ w X Q i + 1 k T w + k T
204 203 202 negsubd χ w X Q i + 1 k T w + k T + k T = w + k T - k T
205 201 202 pncand χ w X Q i + 1 k T w + k T - k T = w
206 198 204 205 3eqtrrd χ w X Q i + 1 k T w = w + k T + k T
207 157 adantr χ w X Q i + 1 k T φ
208 156 simpld χ φ i 0 ..^ M
209 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
210 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
211 11 209 210 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
212 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
213 211 212 sylibr φ i 0 ..^ M Q i Q i + 1 dom F
214 8 162 syl φ dom F = D
215 214 adantr φ i 0 ..^ M dom F = D
216 213 215 sseqtrd φ i 0 ..^ M Q i Q i + 1 D
217 208 216 syl χ Q i Q i + 1 D
218 217 adantr χ w X Q i + 1 k T Q i Q i + 1 D
219 elfzofz i 0 ..^ M i 0 M
220 219 adantl φ i 0 ..^ M i 0 M
221 178 220 ffvelcdmd φ i 0 ..^ M Q i
222 157 177 221 syl2anc χ Q i
223 222 rexrd χ Q i *
224 223 adantr χ w X Q i + 1 k T Q i *
225 182 rexrd χ Q i + 1 *
226 225 adantr χ w X Q i + 1 k T Q i + 1 *
227 199 adantl χ w X Q i + 1 k T w
228 193 zred χ w X Q i + 1 k T k
229 207 26 syl χ w X Q i + 1 k T T
230 228 229 remulcld χ w X Q i + 1 k T k T
231 227 230 readdcld χ w X Q i + 1 k T w + k T
232 222 adantr χ w X Q i + 1 k T Q i
233 157 13 syl χ X
234 233 186 readdcld χ X + k T
235 234 adantr χ w X Q i + 1 k T X + k T
236 16 simprbi χ y = X + k T
237 236 eqcomd χ X + k T = y
238 156 simprd χ y Q i Q i + 1
239 237 238 eqeltrd χ X + k T Q i Q i + 1
240 icogelb Q i * Q i + 1 * X + k T Q i Q i + 1 Q i X + k T
241 223 225 239 240 syl3anc χ Q i X + k T
242 241 adantr χ w X Q i + 1 k T Q i X + k T
243 207 13 syl χ w X Q i + 1 k T X
244 243 rexrd χ w X Q i + 1 k T X *
245 182 adantr χ w X Q i + 1 k T Q i + 1
246 245 230 resubcld χ w X Q i + 1 k T Q i + 1 k T
247 246 rexrd χ w X Q i + 1 k T Q i + 1 k T *
248 simpr χ w X Q i + 1 k T w X Q i + 1 k T
249 ioogtlb X * Q i + 1 k T * w X Q i + 1 k T X < w
250 244 247 248 249 syl3anc χ w X Q i + 1 k T X < w
251 243 227 230 250 ltadd1dd χ w X Q i + 1 k T X + k T < w + k T
252 232 235 231 242 251 lelttrd χ w X Q i + 1 k T Q i < w + k T
253 iooltub X * Q i + 1 k T * w X Q i + 1 k T w < Q i + 1 k T
254 244 247 248 253 syl3anc χ w X Q i + 1 k T w < Q i + 1 k T
255 227 246 230 254 ltadd1dd χ w X Q i + 1 k T w + k T < Q i + 1 - k T + k T
256 182 recnd χ Q i + 1
257 186 recnd χ k T
258 256 257 npcand χ Q i + 1 - k T + k T = Q i + 1
259 258 adantr χ w X Q i + 1 k T Q i + 1 - k T + k T = Q i + 1
260 255 259 breqtrd χ w X Q i + 1 k T w + k T < Q i + 1
261 224 226 231 252 260 eliood χ w X Q i + 1 k T w + k T Q i Q i + 1
262 218 261 sseldd χ w X Q i + 1 k T w + k T D
263 193 znegcld χ w X Q i + 1 k T k
264 ovex w + k T V
265 eleq1 x = w + k T x D w + k T D
266 265 3anbi2d x = w + k T φ x D k φ w + k T D k
267 oveq1 x = w + k T x + k T = w + k T + k T
268 267 eleq1d x = w + k T x + k T D w + k T + k T D
269 266 268 imbi12d x = w + k T φ x D k x + k T D φ w + k T D k w + k T + k T D
270 negex k V
271 eleq1 j = k j k
272 271 3anbi3d j = k φ x D j φ x D k
273 oveq1 j = k j T = k T
274 273 oveq2d j = k x + j T = x + k T
275 274 eleq1d j = k x + j T D x + k T D
276 272 275 imbi12d j = k φ x D j x + j T D φ x D k x + k T D
277 eleq1 k = j k j
278 277 3anbi3d k = j φ x D k φ x D j
279 oveq1 k = j k T = j T
280 279 oveq2d k = j x + k T = x + j T
281 280 eleq1d k = j x + k T D x + j T D
282 278 281 imbi12d k = j φ x D k x + k T D φ x D j x + j T D
283 282 9 chvarvv φ x D j x + j T D
284 270 276 283 vtocl φ x D k x + k T D
285 264 269 284 vtocl φ w + k T D k w + k T + k T D
286 207 262 263 285 syl3anc χ w X Q i + 1 k T w + k T + k T D
287 206 286 eqeltrd χ w X Q i + 1 k T w D
288 287 ralrimiva χ w X Q i + 1 k T w D
289 dfss3 X Q i + 1 k T D w X Q i + 1 k T w D
290 288 289 sylibr χ X Q i + 1 k T D
291 192 290 ssind χ X Q i + 1 k T X +∞ D
292 ioosscn X +∞
293 ssinss1 X +∞ X +∞ D
294 292 293 mp1i χ X +∞ D
295 eqid TopOpen fld = TopOpen fld
296 eqid TopOpen fld 𝑡 X +∞ D X = TopOpen fld 𝑡 X +∞ D X
297 233 rexrd χ X *
298 233 leidd χ X X
299 236 oveq1d χ y k T = X + k T - k T
300 233 recnd χ X
301 300 257 pncand χ X + k T - k T = X
302 299 301 eqtr2d χ X = y k T
303 icossre Q i Q i + 1 * Q i Q i + 1
304 222 225 303 syl2anc χ Q i Q i + 1
305 304 238 sseldd χ y
306 icoltub Q i * Q i + 1 * y Q i Q i + 1 y < Q i + 1
307 223 225 238 306 syl3anc χ y < Q i + 1
308 305 182 186 307 ltsub1dd χ y k T < Q i + 1 k T
309 302 308 eqbrtrd χ X < Q i + 1 k T
310 297 188 297 298 309 elicod χ X X Q i + 1 k T
311 snunioo1 X * Q i + 1 k T * X < Q i + 1 k T X Q i + 1 k T X = X Q i + 1 k T
312 297 188 309 311 syl3anc χ X Q i + 1 k T X = X Q i + 1 k T
313 312 fveq2d χ int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X = int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T
314 295 cnfldtop TopOpen fld Top
315 ovex X +∞ V
316 315 inex1 X +∞ D V
317 snex X V
318 316 317 unex X +∞ D X V
319 resttop TopOpen fld Top X +∞ D X V TopOpen fld 𝑡 X +∞ D X Top
320 314 318 319 mp2an TopOpen fld 𝑡 X +∞ D X Top
321 320 a1i χ TopOpen fld 𝑡 X +∞ D X Top
322 retop topGen ran . Top
323 322 a1i χ topGen ran . Top
324 318 a1i χ X +∞ D X V
325 iooretop −∞ Q i + 1 k T topGen ran .
326 325 a1i χ −∞ Q i + 1 k T topGen ran .
327 elrestr topGen ran . Top X +∞ D X V −∞ Q i + 1 k T topGen ran . −∞ Q i + 1 k T X +∞ D X topGen ran . 𝑡 X +∞ D X
328 323 324 326 327 syl3anc χ −∞ Q i + 1 k T X +∞ D X topGen ran . 𝑡 X +∞ D X
329 mnfxr −∞ *
330 329 a1i χ x X Q i + 1 k T −∞ *
331 188 adantr χ x X Q i + 1 k T Q i + 1 k T *
332 icossre X Q i + 1 k T * X Q i + 1 k T
333 233 188 332 syl2anc χ X Q i + 1 k T
334 333 sselda χ x X Q i + 1 k T x
335 334 mnfltd χ x X Q i + 1 k T −∞ < x
336 297 adantr χ x X Q i + 1 k T X *
337 simpr χ x X Q i + 1 k T x X Q i + 1 k T
338 icoltub X * Q i + 1 k T * x X Q i + 1 k T x < Q i + 1 k T
339 336 331 337 338 syl3anc χ x X Q i + 1 k T x < Q i + 1 k T
340 330 331 334 335 339 eliood χ x X Q i + 1 k T x −∞ Q i + 1 k T
341 vsnid x x
342 341 a1i x = X x x
343 sneq x = X x = X
344 342 343 eleqtrd x = X x X
345 elun2 x X x X +∞ D X
346 344 345 syl x = X x X +∞ D X
347 346 adantl χ x X Q i + 1 k T x = X x X +∞ D X
348 297 ad2antrr χ x X Q i + 1 k T ¬ x = X X *
349 175 a1i χ x X Q i + 1 k T ¬ x = X +∞ *
350 334 adantr χ x X Q i + 1 k T ¬ x = X x
351 233 ad2antrr χ x X Q i + 1 k T ¬ x = X X
352 icogelb X * Q i + 1 k T * x X Q i + 1 k T X x
353 336 331 337 352 syl3anc χ x X Q i + 1 k T X x
354 353 adantr χ x X Q i + 1 k T ¬ x = X X x
355 neqne ¬ x = X x X
356 355 adantl χ x X Q i + 1 k T ¬ x = X x X
357 351 350 354 356 leneltd χ x X Q i + 1 k T ¬ x = X X < x
358 350 ltpnfd χ x X Q i + 1 k T ¬ x = X x < +∞
359 348 349 350 357 358 eliood χ x X Q i + 1 k T ¬ x = X x X +∞
360 183 zcnd χ k
361 360 195 mulneg1d χ k T = k T
362 361 oveq2d χ w + k T + k T = w + k T + k T
363 362 adantr χ w X Q i + 1 k T w + k T + k T = w + k T + k T
364 ioosscn X Q i + 1 k T
365 364 sseli w X Q i + 1 k T w
366 365 adantl χ w X Q i + 1 k T w
367 257 adantr χ w X Q i + 1 k T k T
368 366 367 addcld χ w X Q i + 1 k T w + k T
369 368 367 negsubd χ w X Q i + 1 k T w + k T + k T = w + k T - k T
370 366 367 pncand χ w X Q i + 1 k T w + k T - k T = w
371 363 369 370 3eqtrrd χ w X Q i + 1 k T w = w + k T + k T
372 186 adantr χ w X Q i + 1 k T k T
373 227 372 readdcld χ w X Q i + 1 k T w + k T
374 224 226 373 252 260 eliood χ w X Q i + 1 k T w + k T Q i Q i + 1
375 218 374 sseldd χ w X Q i + 1 k T w + k T D
376 271 3anbi3d j = k φ w + k T D j φ w + k T D k
377 273 oveq2d j = k w + k T + j T = w + k T + k T
378 377 eleq1d j = k w + k T + j T D w + k T + k T D
379 376 378 imbi12d j = k φ w + k T D j w + k T + j T D φ w + k T D k w + k T + k T D
380 265 3anbi2d x = w + k T φ x D j φ w + k T D j
381 oveq1 x = w + k T x + j T = w + k T + j T
382 381 eleq1d x = w + k T x + j T D w + k T + j T D
383 380 382 imbi12d x = w + k T φ x D j x + j T D φ w + k T D j w + k T + j T D
384 264 383 283 vtocl φ w + k T D j w + k T + j T D
385 270 379 384 vtocl φ w + k T D k w + k T + k T D
386 207 375 263 385 syl3anc χ w X Q i + 1 k T w + k T + k T D
387 371 386 eqeltrd χ w X Q i + 1 k T w D
388 387 ralrimiva χ w X Q i + 1 k T w D
389 388 289 sylibr χ X Q i + 1 k T D
390 389 ad2antrr χ x X Q i + 1 k T ¬ x = X X Q i + 1 k T D
391 188 ad2antrr χ x X Q i + 1 k T ¬ x = X Q i + 1 k T *
392 339 adantr χ x X Q i + 1 k T ¬ x = X x < Q i + 1 k T
393 348 391 350 357 392 eliood χ x X Q i + 1 k T ¬ x = X x X Q i + 1 k T
394 390 393 sseldd χ x X Q i + 1 k T ¬ x = X x D
395 359 394 elind χ x X Q i + 1 k T ¬ x = X x X +∞ D
396 elun1 x X +∞ D x X +∞ D X
397 395 396 syl χ x X Q i + 1 k T ¬ x = X x X +∞ D X
398 347 397 pm2.61dan χ x X Q i + 1 k T x X +∞ D X
399 340 398 elind χ x X Q i + 1 k T x −∞ Q i + 1 k T X +∞ D X
400 297 adantr χ x −∞ Q i + 1 k T X +∞ D X X *
401 188 adantr χ x −∞ Q i + 1 k T X +∞ D X Q i + 1 k T *
402 elinel1 x −∞ Q i + 1 k T X +∞ D X x −∞ Q i + 1 k T
403 elioore x −∞ Q i + 1 k T x
404 402 403 syl x −∞ Q i + 1 k T X +∞ D X x
405 404 rexrd x −∞ Q i + 1 k T X +∞ D X x *
406 405 adantl χ x −∞ Q i + 1 k T X +∞ D X x *
407 elinel2 x −∞ Q i + 1 k T X +∞ D X x X +∞ D X
408 233 adantr χ x = X X
409 92 eqcomd x = X X = x
410 409 adantl χ x = X X = x
411 408 410 eqled χ x = X X x
412 411 adantlr χ x X +∞ D X x = X X x
413 simpll χ x X +∞ D X ¬ x = X χ
414 simplr χ x X +∞ D X ¬ x = X x X +∞ D X
415 id ¬ x = X ¬ x = X
416 velsn x X x = X
417 415 416 sylnibr ¬ x = X ¬ x X
418 417 adantl χ x X +∞ D X ¬ x = X ¬ x X
419 elunnel2 x X +∞ D X ¬ x X x X +∞ D
420 414 418 419 syl2anc χ x X +∞ D X ¬ x = X x X +∞ D
421 elinel1 x X +∞ D x X +∞
422 420 421 syl χ x X +∞ D X ¬ x = X x X +∞
423 233 adantr χ x X +∞ X
424 elioore x X +∞ x
425 424 adantl χ x X +∞ x
426 297 adantr χ x X +∞ X *
427 175 a1i χ x X +∞ +∞ *
428 simpr χ x X +∞ x X +∞
429 ioogtlb X * +∞ * x X +∞ X < x
430 426 427 428 429 syl3anc χ x X +∞ X < x
431 423 425 430 ltled χ x X +∞ X x
432 413 422 431 syl2anc χ x X +∞ D X ¬ x = X X x
433 412 432 pm2.61dan χ x X +∞ D X X x
434 407 433 sylan2 χ x −∞ Q i + 1 k T X +∞ D X X x
435 329 a1i χ x −∞ Q i + 1 k T −∞ *
436 188 adantr χ x −∞ Q i + 1 k T Q i + 1 k T *
437 simpr χ x −∞ Q i + 1 k T x −∞ Q i + 1 k T
438 iooltub −∞ * Q i + 1 k T * x −∞ Q i + 1 k T x < Q i + 1 k T
439 435 436 437 438 syl3anc χ x −∞ Q i + 1 k T x < Q i + 1 k T
440 402 439 sylan2 χ x −∞ Q i + 1 k T X +∞ D X x < Q i + 1 k T
441 400 401 406 434 440 elicod χ x −∞ Q i + 1 k T X +∞ D X x X Q i + 1 k T
442 399 441 impbida χ x X Q i + 1 k T x −∞ Q i + 1 k T X +∞ D X
443 442 eqrdv χ X Q i + 1 k T = −∞ Q i + 1 k T X +∞ D X
444 ioossre X +∞
445 ssinss1 X +∞ X +∞ D
446 444 445 mp1i χ X +∞ D
447 233 snssd χ X
448 446 447 unssd χ X +∞ D X
449 eqid topGen ran . = topGen ran .
450 295 449 rerest X +∞ D X TopOpen fld 𝑡 X +∞ D X = topGen ran . 𝑡 X +∞ D X
451 448 450 syl χ TopOpen fld 𝑡 X +∞ D X = topGen ran . 𝑡 X +∞ D X
452 328 443 451 3eltr4d χ X Q i + 1 k T TopOpen fld 𝑡 X +∞ D X
453 isopn3i TopOpen fld 𝑡 X +∞ D X Top X Q i + 1 k T TopOpen fld 𝑡 X +∞ D X int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T = X Q i + 1 k T
454 321 452 453 syl2anc χ int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T = X Q i + 1 k T
455 313 454 eqtr2d χ X Q i + 1 k T = int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X
456 310 455 eleqtrd χ X int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X
457 174 291 294 295 296 456 limcres χ F X +∞ D X Q i + 1 k T lim X = F X +∞ D lim X
458 291 resabs1d χ F X +∞ D X Q i + 1 k T = F X Q i + 1 k T
459 458 oveq1d χ F X +∞ D X Q i + 1 k T lim X = F X Q i + 1 k T lim X
460 169 a1i φ
461 8 460 fssd φ F : D
462 214 feq2d φ F : dom F F : D
463 461 462 mpbird φ F : dom F
464 157 463 syl χ F : dom F
465 464 adantr χ w F X Q i + 1 k T lim X F : dom F
466 364 a1i χ w F X Q i + 1 k T lim X X Q i + 1 k T
467 389 163 sseqtrrd χ X Q i + 1 k T dom F
468 467 adantr χ w F X Q i + 1 k T lim X X Q i + 1 k T dom F
469 257 adantr χ w F X Q i + 1 k T lim X k T
470 eqid z | x X Q i + 1 k T z = x + k T = z | x X Q i + 1 k T z = x + k T
471 eqeq1 z = w z = x + k T w = x + k T
472 471 rexbidv z = w x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
473 472 elrab w z | x X Q i + 1 k T z = x + k T w x X Q i + 1 k T w = x + k T
474 473 simprbi w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
475 474 adantl χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
476 nfv x χ
477 nfre1 x x X Q i + 1 k T z = x + k T
478 nfcv _ x
479 477 478 nfrabw _ x z | x X Q i + 1 k T z = x + k T
480 479 nfcri x w z | x X Q i + 1 k T z = x + k T
481 476 480 nfan x χ w z | x X Q i + 1 k T z = x + k T
482 nfv x w D
483 simp3 χ x X Q i + 1 k T w = x + k T w = x + k T
484 eleq1 w = x w X Q i + 1 k T x X Q i + 1 k T
485 484 anbi2d w = x χ w X Q i + 1 k T χ x X Q i + 1 k T
486 oveq1 w = x w + k T = x + k T
487 486 eleq1d w = x w + k T D x + k T D
488 485 487 imbi12d w = x χ w X Q i + 1 k T w + k T D χ x X Q i + 1 k T x + k T D
489 488 262 chvarvv χ x X Q i + 1 k T x + k T D
490 489 3adant3 χ x X Q i + 1 k T w = x + k T x + k T D
491 483 490 eqeltrd χ x X Q i + 1 k T w = x + k T w D
492 491 3exp χ x X Q i + 1 k T w = x + k T w D
493 492 adantr χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T w D
494 481 482 493 rexlimd χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T w D
495 475 494 mpd χ w z | x X Q i + 1 k T z = x + k T w D
496 495 ralrimiva χ w z | x X Q i + 1 k T z = x + k T w D
497 dfss3 z | x X Q i + 1 k T z = x + k T D w z | x X Q i + 1 k T z = x + k T w D
498 496 497 sylibr χ z | x X Q i + 1 k T z = x + k T D
499 498 163 sseqtrrd χ z | x X Q i + 1 k T z = x + k T dom F
500 499 adantr χ w F X Q i + 1 k T lim X z | x X Q i + 1 k T z = x + k T dom F
501 157 adantr χ x X Q i + 1 k T φ
502 389 sselda χ x X Q i + 1 k T x D
503 183 adantr χ x X Q i + 1 k T k
504 501 502 503 10 syl3anc χ x X Q i + 1 k T F x + k T = F x
505 504 adantlr χ w F X Q i + 1 k T lim X x X Q i + 1 k T F x + k T = F x
506 simpr χ w F X Q i + 1 k T lim X w F X Q i + 1 k T lim X
507 465 466 468 469 470 500 505 506 limcperiod χ w F X Q i + 1 k T lim X w F z | x X Q i + 1 k T z = x + k T lim X + k T
508 258 eqcomd χ Q i + 1 = Q i + 1 - k T + k T
509 236 508 oveq12d χ y Q i + 1 = X + k T Q i + 1 - k T + k T
510 233 187 186 iooshift χ X + k T Q i + 1 - k T + k T = z | x X Q i + 1 k T z = x + k T
511 509 510 eqtr2d χ z | x X Q i + 1 k T z = x + k T = y Q i + 1
512 511 reseq2d χ F z | x X Q i + 1 k T z = x + k T = F y Q i + 1
513 512 237 oveq12d χ F z | x X Q i + 1 k T z = x + k T lim X + k T = F y Q i + 1 lim y
514 513 adantr χ w F X Q i + 1 k T lim X F z | x X Q i + 1 k T z = x + k T lim X + k T = F y Q i + 1 lim y
515 507 514 eleqtrd χ w F X Q i + 1 k T lim X w F y Q i + 1 lim y
516 464 adantr χ w F y Q i + 1 lim y F : dom F
517 ioosscn y Q i + 1
518 517 a1i χ w F y Q i + 1 lim y y Q i + 1
519 icogelb Q i * Q i + 1 * y Q i Q i + 1 Q i y
520 223 225 238 519 syl3anc χ Q i y
521 iooss1 Q i * Q i y y Q i + 1 Q i Q i + 1
522 223 520 521 syl2anc χ y Q i + 1 Q i Q i + 1
523 522 217 sstrd χ y Q i + 1 D
524 523 163 sseqtrrd χ y Q i + 1 dom F
525 524 adantr χ w F y Q i + 1 lim y y Q i + 1 dom F
526 360 negcld χ k
527 526 195 mulcld χ k T
528 527 adantr χ w F y Q i + 1 lim y k T
529 eqid z | x y Q i + 1 z = x + k T = z | x y Q i + 1 z = x + k T
530 eqeq1 z = w z = x + k T w = x + k T
531 530 rexbidv z = w x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
532 531 elrab w z | x y Q i + 1 z = x + k T w x y Q i + 1 w = x + k T
533 532 simprbi w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
534 533 adantl χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
535 nfre1 x x y Q i + 1 z = x + k T
536 535 478 nfrabw _ x z | x y Q i + 1 z = x + k T
537 536 nfcri x w z | x y Q i + 1 z = x + k T
538 476 537 nfan x χ w z | x y Q i + 1 z = x + k T
539 simp3 χ x y Q i + 1 w = x + k T w = x + k T
540 157 adantr χ x y Q i + 1 φ
541 523 sselda χ x y Q i + 1 x D
542 183 adantr χ x y Q i + 1 k
543 542 znegcld χ x y Q i + 1 k
544 540 541 543 284 syl3anc χ x y Q i + 1 x + k T D
545 544 3adant3 χ x y Q i + 1 w = x + k T x + k T D
546 539 545 eqeltrd χ x y Q i + 1 w = x + k T w D
547 546 3exp χ x y Q i + 1 w = x + k T w D
548 547 adantr χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T w D
549 538 482 548 rexlimd χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T w D
550 534 549 mpd χ w z | x y Q i + 1 z = x + k T w D
551 550 ralrimiva χ w z | x y Q i + 1 z = x + k T w D
552 dfss3 z | x y Q i + 1 z = x + k T D w z | x y Q i + 1 z = x + k T w D
553 551 552 sylibr χ z | x y Q i + 1 z = x + k T D
554 553 163 sseqtrrd χ z | x y Q i + 1 z = x + k T dom F
555 554 adantr χ w F y Q i + 1 lim y z | x y Q i + 1 z = x + k T dom F
556 157 ad2antrr χ w F y Q i + 1 lim y x y Q i + 1 φ
557 541 adantlr χ w F y Q i + 1 lim y x y Q i + 1 x D
558 543 adantlr χ w F y Q i + 1 lim y x y Q i + 1 k
559 274 fveq2d j = k F x + j T = F x + k T
560 559 eqeq1d j = k F x + j T = F x F x + k T = F x
561 272 560 imbi12d j = k φ x D j F x + j T = F x φ x D k F x + k T = F x
562 280 fveq2d k = j F x + k T = F x + j T
563 562 eqeq1d k = j F x + k T = F x F x + j T = F x
564 278 563 imbi12d k = j φ x D k F x + k T = F x φ x D j F x + j T = F x
565 564 10 chvarvv φ x D j F x + j T = F x
566 270 561 565 vtocl φ x D k F x + k T = F x
567 556 557 558 566 syl3anc χ w F y Q i + 1 lim y x y Q i + 1 F x + k T = F x
568 simpr χ w F y Q i + 1 lim y w F y Q i + 1 lim y
569 516 518 525 528 529 555 567 568 limcperiod χ w F y Q i + 1 lim y w F z | x y Q i + 1 z = x + k T lim y + k T
570 361 oveq2d χ y + k T = y + k T
571 305 recnd χ y
572 571 257 negsubd χ y + k T = y k T
573 302 eqcomd χ y k T = X
574 570 572 573 3eqtrd χ y + k T = X
575 574 eqcomd χ X = y + k T
576 361 oveq2d χ Q i + 1 + k T = Q i + 1 + k T
577 256 257 negsubd χ Q i + 1 + k T = Q i + 1 k T
578 576 577 eqtr2d χ Q i + 1 k T = Q i + 1 + k T
579 575 578 oveq12d χ X Q i + 1 k T = y + k T Q i + 1 + k T
580 184 renegcld χ k
581 580 185 remulcld χ k T
582 305 182 581 iooshift χ y + k T Q i + 1 + k T = z | x y Q i + 1 z = x + k T
583 579 582 eqtr2d χ z | x y Q i + 1 z = x + k T = X Q i + 1 k T
584 583 adantr χ w F y Q i + 1 lim y z | x y Q i + 1 z = x + k T = X Q i + 1 k T
585 584 reseq2d χ w F y Q i + 1 lim y F z | x y Q i + 1 z = x + k T = F X Q i + 1 k T
586 574 adantr χ w F y Q i + 1 lim y y + k T = X
587 585 586 oveq12d χ w F y Q i + 1 lim y F z | x y Q i + 1 z = x + k T lim y + k T = F X Q i + 1 k T lim X
588 569 587 eleqtrd χ w F y Q i + 1 lim y w F X Q i + 1 k T lim X
589 515 588 impbida χ w F X Q i + 1 k T lim X w F y Q i + 1 lim y
590 589 eqrdv χ F X Q i + 1 k T lim X = F y Q i + 1 lim y
591 459 590 eqtrd χ F X +∞ D X Q i + 1 k T lim X = F y Q i + 1 lim y
592 167 457 591 3eqtr2d χ F X +∞ lim X = F y Q i + 1 lim y
593 157 177 78 syl2anc χ Q i < Q i + 1
594 157 177 11 syl2anc χ F Q i Q i + 1 : Q i Q i + 1 cn
595 157 177 12 syl2anc χ R F Q i Q i + 1 lim Q i
596 eqid if y = Q i R F Q i Q i + 1 y = if y = Q i R F Q i Q i + 1 y
597 eqid TopOpen fld 𝑡 Q i Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1
598 222 182 593 594 595 305 182 307 522 596 597 fourierdlem32 χ if y = Q i R F Q i Q i + 1 y F Q i Q i + 1 y Q i + 1 lim y
599 522 resabs1d χ F Q i Q i + 1 y Q i + 1 = F y Q i + 1
600 599 oveq1d χ F Q i Q i + 1 y Q i + 1 lim y = F y Q i + 1 lim y
601 598 600 eleqtrd χ if y = Q i R F Q i Q i + 1 y F y Q i + 1 lim y
602 ne0i if y = Q i R F Q i Q i + 1 y F y Q i + 1 lim y F y Q i + 1 lim y
603 601 602 syl χ F y Q i + 1 lim y
604 592 603 eqnetrd χ F X +∞ lim X
605 16 604 sylbir φ i 0 ..^ M y Q i Q i + 1 k y = X + k T F X +∞ lim X
606 152 153 154 605 syl21anc φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
607 606 3exp φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
608 607 adantr φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
609 143 148 608 rexlim2d φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
610 140 609 mpd φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
611 133 139 610 vtocl φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T F X +∞ lim X
612 17 132 611 syl2anc φ E X = B F X +∞ lim X
613 iocssre A * B A B
614 63 2 613 syl2anc φ A B
615 ovex B x T T V
616 14 fvmpt2 x B x T T V Z x = B x T T
617 615 616 mpan2 x Z x = B x T T
618 617 oveq2d x x + Z x = x + B x T T
619 618 mpteq2ia x x + Z x = x x + B x T T
620 15 619 eqtri E = x x + B x T T
621 1 2 3 5 620 fourierdlem4 φ E : A B
622 621 13 ffvelcdmd φ E X A B
623 614 622 sseldd φ E X
624 623 adantr φ E X B E X
625 simpl φ E X B φ
626 simpr φ E X A B E X ran Q E X ran Q
627 ffn Q : 0 M Q Fn 0 M
628 48 627 syl φ Q Fn 0 M
629 628 ad2antrr φ E X A B E X ran Q Q Fn 0 M
630 fvelrnb Q Fn 0 M E X ran Q j 0 M Q j = E X
631 629 630 syl φ E X A B E X ran Q E X ran Q j 0 M Q j = E X
632 626 631 mpbid φ E X A B E X ran Q j 0 M Q j = E X
633 1zzd φ E X A B j 0 M Q j = E X 1
634 elfzelz j 0 M j
635 634 ad2antlr φ E X A B j 0 M Q j = E X j
636 635 zred φ E X A B j 0 M Q j = E X j
637 elfzle1 j 0 M 0 j
638 637 ad2antlr φ E X A B j 0 M Q j = E X 0 j
639 id Q j = E X Q j = E X
640 639 eqcomd Q j = E X E X = Q j
641 640 ad2antlr φ Q j = E X j = 0 E X = Q j
642 fveq2 j = 0 Q j = Q 0
643 642 adantl φ Q j = E X j = 0 Q j = Q 0
644 45 simprld φ Q 0 = A Q M = B
645 644 simpld φ Q 0 = A
646 645 ad2antrr φ Q j = E X j = 0 Q 0 = A
647 641 643 646 3eqtrd φ Q j = E X j = 0 E X = A
648 647 adantllr φ E X A B Q j = E X j = 0 E X = A
649 648 adantllr φ E X A B j 0 M Q j = E X j = 0 E X = A
650 1 adantr φ E X A B A
651 63 adantr φ E X A B A *
652 2 rexrd φ B *
653 652 adantr φ E X A B B *
654 simpr φ E X A B E X A B
655 iocgtlb A * B * E X A B A < E X
656 651 653 654 655 syl3anc φ E X A B A < E X
657 650 656 gtned φ E X A B E X A
658 657 neneqd φ E X A B ¬ E X = A
659 658 ad3antrrr φ E X A B j 0 M Q j = E X j = 0 ¬ E X = A
660 649 659 pm2.65da φ E X A B j 0 M Q j = E X ¬ j = 0
661 660 neqned φ E X A B j 0 M Q j = E X j 0
662 636 638 661 ne0gt0d φ E X A B j 0 M Q j = E X 0 < j
663 0zd φ E X A B j 0 M Q j = E X 0
664 zltp1le 0 j 0 < j 0 + 1 j
665 663 635 664 syl2anc φ E X A B j 0 M Q j = E X 0 < j 0 + 1 j
666 662 665 mpbid φ E X A B j 0 M Q j = E X 0 + 1 j
667 82 666 eqbrtrid φ E X A B j 0 M Q j = E X 1 j
668 eluz2 j 1 1 j 1 j
669 633 635 667 668 syl3anbrc φ E X A B j 0 M Q j = E X j 1
670 nnuz = 1
671 669 670 eleqtrrdi φ E X A B j 0 M Q j = E X j
672 nnm1nn0 j j 1 0
673 671 672 syl φ E X A B j 0 M Q j = E X j 1 0
674 673 50 eleqtrdi φ E X A B j 0 M Q j = E X j 1 0
675 19 ad3antrrr φ E X A B j 0 M Q j = E X M
676 peano2zm j j 1
677 634 676 syl j 0 M j 1
678 677 zred j 0 M j 1
679 634 zred j 0 M j
680 elfzel2 j 0 M M
681 680 zred j 0 M M
682 679 ltm1d j 0 M j 1 < j
683 elfzle2 j 0 M j M
684 678 679 681 682 683 ltletrd j 0 M j 1 < M
685 684 ad2antlr φ E X A B j 0 M Q j = E X j 1 < M
686 elfzo2 j 1 0 ..^ M j 1 0 M j 1 < M
687 674 675 685 686 syl3anbrc φ E X A B j 0 M Q j = E X j 1 0 ..^ M
688 48 ad3antrrr φ E X A B j 0 M Q j = E X Q : 0 M
689 635 676 syl φ E X A B j 0 M Q j = E X j 1
690 673 nn0ge0d φ E X A B j 0 M Q j = E X 0 j 1
691 678 681 684 ltled j 0 M j 1 M
692 691 ad2antlr φ E X A B j 0 M Q j = E X j 1 M
693 663 675 689 690 692 elfzd φ E X A B j 0 M Q j = E X j 1 0 M
694 688 693 ffvelcdmd φ E X A B j 0 M Q j = E X Q j 1
695 694 rexrd φ E X A B j 0 M Q j = E X Q j 1 *
696 48 ffvelcdmda φ j 0 M Q j
697 696 rexrd φ j 0 M Q j *
698 697 adantlr φ E X A B j 0 M Q j *
699 698 adantr φ E X A B j 0 M Q j = E X Q j *
700 614 sselda φ E X A B E X
701 700 rexrd φ E X A B E X *
702 701 ad2antrr φ E X A B j 0 M Q j = E X E X *
703 simplll φ E X A B j 0 M Q j = E X φ
704 ovex j 1 V
705 eleq1 i = j 1 i 0 ..^ M j 1 0 ..^ M
706 705 anbi2d i = j 1 φ i 0 ..^ M φ j 1 0 ..^ M
707 fveq2 i = j 1 Q i = Q j 1
708 oveq1 i = j 1 i + 1 = j - 1 + 1
709 708 fveq2d i = j 1 Q i + 1 = Q j - 1 + 1
710 707 709 breq12d i = j 1 Q i < Q i + 1 Q j 1 < Q j - 1 + 1
711 706 710 imbi12d i = j 1 φ i 0 ..^ M Q i < Q i + 1 φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
712 704 711 78 vtocl φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
713 703 687 712 syl2anc φ E X A B j 0 M Q j = E X Q j 1 < Q j - 1 + 1
714 634 zcnd j 0 M j
715 1cnd j 0 M 1
716 714 715 npcand j 0 M j - 1 + 1 = j
717 716 eqcomd j 0 M j = j - 1 + 1
718 717 fveq2d j 0 M Q j = Q j - 1 + 1
719 718 eqcomd j 0 M Q j - 1 + 1 = Q j
720 719 ad2antlr φ E X A B j 0 M Q j = E X Q j - 1 + 1 = Q j
721 713 720 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < Q j
722 simpr φ E X A B j 0 M Q j = E X Q j = E X
723 721 722 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < E X
724 623 leidd φ E X E X
725 724 ad2antrr φ j 0 M Q j = E X E X E X
726 640 adantl φ j 0 M Q j = E X E X = Q j
727 725 726 breqtrd φ j 0 M Q j = E X E X Q j
728 727 adantllr φ E X A B j 0 M Q j = E X E X Q j
729 695 699 702 723 728 eliocd φ E X A B j 0 M Q j = E X E X Q j 1 Q j
730 718 oveq2d j 0 M Q j 1 Q j = Q j 1 Q j - 1 + 1
731 730 ad2antlr φ E X A B j 0 M Q j = E X Q j 1 Q j = Q j 1 Q j - 1 + 1
732 729 731 eleqtrd φ E X A B j 0 M Q j = E X E X Q j 1 Q j - 1 + 1
733 707 709 oveq12d i = j 1 Q i Q i + 1 = Q j 1 Q j - 1 + 1
734 733 eleq2d i = j 1 E X Q i Q i + 1 E X Q j 1 Q j - 1 + 1
735 734 rspcev j 1 0 ..^ M E X Q j 1 Q j - 1 + 1 i 0 ..^ M E X Q i Q i + 1
736 687 732 735 syl2anc φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
737 736 ex φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
738 737 adantlr φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
739 738 rexlimdva φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
740 632 739 mpd φ E X A B E X ran Q i 0 ..^ M E X Q i Q i + 1
741 6 ad2antrr φ E X A B ¬ E X ran Q M
742 48 ad2antrr φ E X A B ¬ E X ran Q Q : 0 M
743 iocssicc A B A B
744 645 eqcomd φ A = Q 0
745 644 simprd φ Q M = B
746 745 eqcomd φ B = Q M
747 744 746 oveq12d φ A B = Q 0 Q M
748 743 747 sseqtrid φ A B Q 0 Q M
749 748 sselda φ E X A B E X Q 0 Q M
750 749 adantr φ E X A B ¬ E X ran Q E X Q 0 Q M
751 simpr φ E X A B ¬ E X ran Q ¬ E X ran Q
752 fveq2 k = j Q k = Q j
753 752 breq1d k = j Q k < E X Q j < E X
754 753 cbvrabv k 0 ..^ M | Q k < E X = j 0 ..^ M | Q j < E X
755 754 supeq1i sup k 0 ..^ M | Q k < E X < = sup j 0 ..^ M | Q j < E X <
756 741 742 750 751 755 fourierdlem25 φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
757 ioossioc Q i Q i + 1 Q i Q i + 1
758 757 sseli E X Q i Q i + 1 E X Q i Q i + 1
759 758 a1i φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
760 759 reximdva φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M E X Q i Q i + 1
761 756 760 mpd φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
762 740 761 pm2.61dan φ E X A B i 0 ..^ M E X Q i Q i + 1
763 622 762 mpdan φ i 0 ..^ M E X Q i Q i + 1
764 fveq2 i = j Q i = Q j
765 oveq1 i = j i + 1 = j + 1
766 765 fveq2d i = j Q i + 1 = Q j + 1
767 764 766 oveq12d i = j Q i Q i + 1 = Q j Q j + 1
768 767 eleq2d i = j E X Q i Q i + 1 E X Q j Q j + 1
769 768 cbvrexvw i 0 ..^ M E X Q i Q i + 1 j 0 ..^ M E X Q j Q j + 1
770 763 769 sylib φ j 0 ..^ M E X Q j Q j + 1
771 770 adantr φ E X B j 0 ..^ M E X Q j Q j + 1
772 elfzonn0 j 0 ..^ M j 0
773 1nn0 1 0
774 773 a1i j 0 ..^ M 1 0
775 772 774 nn0addcld j 0 ..^ M j + 1 0
776 775 50 eleqtrdi j 0 ..^ M j + 1 0
777 776 adantr j 0 ..^ M E X = Q j + 1 j + 1 0
778 777 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 0
779 19 ad2antrr φ E X B E X = Q j + 1 M
780 779 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M
781 772 nn0red j 0 ..^ M j
782 781 adantr j 0 ..^ M E X = Q j + 1 j
783 782 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j
784 1red φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 1
785 783 784 readdcld φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1
786 780 zred φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M
787 elfzop1le2 j 0 ..^ M j + 1 M
788 787 adantr j 0 ..^ M E X = Q j + 1 j + 1 M
789 788 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 M
790 simplr φ E X = Q j + 1 M = j + 1 E X = Q j + 1
791 fveq2 M = j + 1 Q M = Q j + 1
792 791 eqcomd M = j + 1 Q j + 1 = Q M
793 792 adantl φ E X = Q j + 1 M = j + 1 Q j + 1 = Q M
794 745 ad2antrr φ E X = Q j + 1 M = j + 1 Q M = B
795 790 793 794 3eqtrd φ E X = Q j + 1 M = j + 1 E X = B
796 795 adantllr φ E X B E X = Q j + 1 M = j + 1 E X = B
797 simpllr φ E X B E X = Q j + 1 M = j + 1 E X B
798 797 neneqd φ E X B E X = Q j + 1 M = j + 1 ¬ E X = B
799 796 798 pm2.65da φ E X B E X = Q j + 1 ¬ M = j + 1
800 799 neqned φ E X B E X = Q j + 1 M j + 1
801 800 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M j + 1
802 785 786 789 801 leneltd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 < M
803 elfzo2 j + 1 0 ..^ M j + 1 0 M j + 1 < M
804 778 780 802 803 syl3anbrc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 0 ..^ M
805 48 adantr φ j 0 ..^ M Q : 0 M
806 fzofzp1 j 0 ..^ M j + 1 0 M
807 806 adantl φ j 0 ..^ M j + 1 0 M
808 805 807 ffvelcdmd φ j 0 ..^ M Q j + 1
809 808 rexrd φ j 0 ..^ M Q j + 1 *
810 809 adantlr φ E X B j 0 ..^ M Q j + 1 *
811 810 3adant3 φ E X B j 0 ..^ M E X Q j Q j + 1 Q j + 1 *
812 811 adantr φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 *
813 simpl1l φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 φ
814 813 48 syl φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q : 0 M
815 fzofzp1 j + 1 0 ..^ M j + 1 + 1 0 M
816 804 815 syl φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 + 1 0 M
817 814 816 ffvelcdmd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 + 1
818 817 rexrd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 + 1 *
819 623 rexrd φ E X *
820 819 ad2antrr φ E X B E X = Q j + 1 E X *
821 820 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X *
822 808 leidd φ j 0 ..^ M Q j + 1 Q j + 1
823 822 adantr φ j 0 ..^ M E X = Q j + 1 Q j + 1 Q j + 1
824 id E X = Q j + 1 E X = Q j + 1
825 824 eqcomd E X = Q j + 1 Q j + 1 = E X
826 825 adantl φ j 0 ..^ M E X = Q j + 1 Q j + 1 = E X
827 823 826 breqtrd φ j 0 ..^ M E X = Q j + 1 Q j + 1 E X
828 827 adantllr φ E X B j 0 ..^ M E X = Q j + 1 Q j + 1 E X
829 828 3adantl3 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 E X
830 simpr φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X = Q j + 1
831 simpr φ j + 1 0 ..^ M E X = Q j + 1 E X = Q j + 1
832 ovex j + 1 V
833 eleq1 i = j + 1 i 0 ..^ M j + 1 0 ..^ M
834 833 anbi2d i = j + 1 φ i 0 ..^ M φ j + 1 0 ..^ M
835 fveq2 i = j + 1 Q i = Q j + 1
836 oveq1 i = j + 1 i + 1 = j + 1 + 1
837 836 fveq2d i = j + 1 Q i + 1 = Q j + 1 + 1
838 835 837 breq12d i = j + 1 Q i < Q i + 1 Q j + 1 < Q j + 1 + 1
839 834 838 imbi12d i = j + 1 φ i 0 ..^ M Q i < Q i + 1 φ j + 1 0 ..^ M Q j + 1 < Q j + 1 + 1
840 832 839 78 vtocl φ j + 1 0 ..^ M Q j + 1 < Q j + 1 + 1
841 840 adantr φ j + 1 0 ..^ M E X = Q j + 1 Q j + 1 < Q j + 1 + 1
842 831 841 eqbrtrd φ j + 1 0 ..^ M E X = Q j + 1 E X < Q j + 1 + 1
843 813 804 830 842 syl21anc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X < Q j + 1 + 1
844 812 818 821 829 843 elicod φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X Q j + 1 Q j + 1 + 1
845 835 837 oveq12d i = j + 1 Q i Q i + 1 = Q j + 1 Q j + 1 + 1
846 845 eleq2d i = j + 1 E X Q i Q i + 1 E X Q j + 1 Q j + 1 + 1
847 846 rspcev j + 1 0 ..^ M E X Q j + 1 Q j + 1 + 1 i 0 ..^ M E X Q i Q i + 1
848 804 844 847 syl2anc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 i 0 ..^ M E X Q i Q i + 1
849 simpl2 φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 j 0 ..^ M
850 id φ j 0 ..^ M E X Q j Q j + 1 φ j 0 ..^ M E X Q j Q j + 1
851 850 3adant1r φ E X B j 0 ..^ M E X Q j Q j + 1 φ j 0 ..^ M E X Q j Q j + 1
852 elfzofz j 0 ..^ M j 0 M
853 852 adantl φ j 0 ..^ M j 0 M
854 805 853 ffvelcdmd φ j 0 ..^ M Q j
855 854 rexrd φ j 0 ..^ M Q j *
856 855 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j *
857 856 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j *
858 809 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j + 1 *
859 858 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1 *
860 819 adantr φ ¬ E X = Q j + 1 E X *
861 860 3ad2antl1 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X *
862 854 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j
863 623 3ad2ant1 φ j 0 ..^ M E X Q j Q j + 1 E X
864 855 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j *
865 809 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j + 1 *
866 simp3 φ j 0 ..^ M E X Q j Q j + 1 E X Q j Q j + 1
867 iocgtlb Q j * Q j + 1 * E X Q j Q j + 1 Q j < E X
868 864 865 866 867 syl3anc φ j 0 ..^ M E X Q j Q j + 1 Q j < E X
869 862 863 868 ltled φ j 0 ..^ M E X Q j Q j + 1 Q j E X
870 869 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j E X
871 863 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X
872 808 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j + 1
873 872 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1
874 iocleub Q j * Q j + 1 * E X Q j Q j + 1 E X Q j + 1
875 864 865 866 874 syl3anc φ j 0 ..^ M E X Q j Q j + 1 E X Q j + 1
876 875 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j + 1
877 neqne ¬ E X = Q j + 1 E X Q j + 1
878 877 necomd ¬ E X = Q j + 1 Q j + 1 E X
879 878 adantl φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1 E X
880 871 873 876 879 leneltd φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X < Q j + 1
881 857 859 861 870 880 elicod φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j Q j + 1
882 851 881 sylan φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j Q j + 1
883 764 766 oveq12d i = j Q i Q i + 1 = Q j Q j + 1
884 883 eleq2d i = j E X Q i Q i + 1 E X Q j Q j + 1
885 884 rspcev j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
886 849 882 885 syl2anc φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 i 0 ..^ M E X Q i Q i + 1
887 848 886 pm2.61dan φ E X B j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
888 887 rexlimdv3a φ E X B j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
889 771 888 mpd φ E X B i 0 ..^ M E X Q i Q i + 1
890 simpr φ E X B E X Q i Q i + 1 E X Q i Q i + 1
891 oveq1 k = B X T k T = B X T T
892 891 oveq2d k = B X T X + k T = X + B X T T
893 892 eqeq2d k = B X T E X = X + k T E X = X + B X T T
894 893 rspcev B X T E X = X + B X T T k E X = X + k T
895 102 110 894 syl2anc φ k E X = X + k T
896 895 ad2antrr φ E X B E X Q i Q i + 1 k E X = X + k T
897 r19.42v k E X Q i Q i + 1 E X = X + k T E X Q i Q i + 1 k E X = X + k T
898 890 896 897 sylanbrc φ E X B E X Q i Q i + 1 k E X Q i Q i + 1 E X = X + k T
899 898 ex φ E X B E X Q i Q i + 1 k E X Q i Q i + 1 E X = X + k T
900 899 reximdv φ E X B i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
901 889 900 mpd φ E X B i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
902 625 901 jca φ E X B φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
903 eleq1 y = E X y Q i Q i + 1 E X Q i Q i + 1
904 eqeq1 y = E X y = X + k T E X = X + k T
905 903 904 anbi12d y = E X y Q i Q i + 1 y = X + k T E X Q i Q i + 1 E X = X + k T
906 905 2rexbidv y = E X i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
907 906 anbi2d y = E X φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
908 907 imbi1d y = E X φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T F X +∞ lim X
909 908 610 vtoclg E X φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T F X +∞ lim X
910 624 902 909 sylc φ E X B F X +∞ lim X
911 612 910 pm2.61dane φ F X +∞ lim X