Metamath Proof Explorer


Theorem fourierdlem5

Description: S is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem5.1 S = x π π sin X + 1 2 x
Assertion fourierdlem5 X S : π π

Proof

Step Hyp Ref Expression
1 fourierdlem5.1 S = x π π sin X + 1 2 x
2 simpl X x π π X
3 1red X x π π 1
4 3 rehalfcld X x π π 1 2
5 2 4 readdcld X x π π X + 1 2
6 pire π
7 6 renegcli π
8 iccssre π π π π
9 7 6 8 mp2an π π
10 9 sseli x π π x
11 10 adantl X x π π x
12 5 11 remulcld X x π π X + 1 2 x
13 12 resincld X x π π sin X + 1 2 x
14 13 1 fmptd X S : π π