Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Fourier Series
fourierdlem5
Next ⟩
fourierdlem6
Metamath Proof Explorer
Ascii
Unicode
Theorem
fourierdlem5
Description:
S
is a function.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Hypothesis
fourierdlem5.1
⊢
S
=
x
∈
−
π
π
⟼
sin
⁡
X
+
1
2
⁢
x
Assertion
fourierdlem5
⊢
X
∈
ℝ
→
S
:
−
π
π
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
fourierdlem5.1
⊢
S
=
x
∈
−
π
π
⟼
sin
⁡
X
+
1
2
⁢
x
2
simpl
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
X
∈
ℝ
3
1red
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
1
∈
ℝ
4
3
rehalfcld
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
1
2
∈
ℝ
5
2
4
readdcld
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
X
+
1
2
∈
ℝ
6
pire
⊢
π
∈
ℝ
7
6
renegcli
⊢
−
π
∈
ℝ
8
iccssre
⊢
−
π
∈
ℝ
∧
π
∈
ℝ
→
−
π
π
⊆
ℝ
9
7
6
8
mp2an
⊢
−
π
π
⊆
ℝ
10
9
sseli
⊢
x
∈
−
π
π
→
x
∈
ℝ
11
10
adantl
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
x
∈
ℝ
12
5
11
remulcld
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
X
+
1
2
⁢
x
∈
ℝ
13
12
resincld
⊢
X
∈
ℝ
∧
x
∈
−
π
π
→
sin
⁡
X
+
1
2
⁢
x
∈
ℝ
14
13
1
fmptd
⊢
X
∈
ℝ
→
S
:
−
π
π
⟶
ℝ