Metamath Proof Explorer


Theorem fourierdlem50

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem50.xre φ X
fourierdlem50.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem50.m φ M
fourierdlem50.v φ V P M
fourierdlem50.a φ A
fourierdlem50.b φ B
fourierdlem50.altb φ A < B
fourierdlem50.ab φ A B π π
fourierdlem50.q Q = i 0 M V i X
fourierdlem50.t T = A B ran Q A B
fourierdlem50.n N = T 1
fourierdlem50.s S = ι f | f Isom < , < 0 N T
fourierdlem50.j φ J 0 ..^ N
fourierdlem50.u U = ι i 0 ..^ M | S J S J + 1 Q i Q i + 1
fourierdlem50.ch χ φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1
Assertion fourierdlem50 φ U 0 ..^ M S J S J + 1 Q U Q U + 1

Proof

Step Hyp Ref Expression
1 fourierdlem50.xre φ X
2 fourierdlem50.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
3 fourierdlem50.m φ M
4 fourierdlem50.v φ V P M
5 fourierdlem50.a φ A
6 fourierdlem50.b φ B
7 fourierdlem50.altb φ A < B
8 fourierdlem50.ab φ A B π π
9 fourierdlem50.q Q = i 0 M V i X
10 fourierdlem50.t T = A B ran Q A B
11 fourierdlem50.n N = T 1
12 fourierdlem50.s S = ι f | f Isom < , < 0 N T
13 fourierdlem50.j φ J 0 ..^ N
14 fourierdlem50.u U = ι i 0 ..^ M | S J S J + 1 Q i Q i + 1
15 fourierdlem50.ch χ φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1
16 5 6 7 ltled φ A B
17 2 3 4 fourierdlem15 φ V : 0 M - π + X π + X
18 pire π
19 18 renegcli π
20 19 a1i φ π
21 20 1 readdcld φ - π + X
22 18 a1i φ π
23 22 1 readdcld φ π + X
24 21 23 iccssred φ - π + X π + X
25 17 24 fssd φ V : 0 M
26 25 ffvelrnda φ i 0 M V i
27 1 adantr φ i 0 M X
28 26 27 resubcld φ i 0 M V i X
29 28 9 fmptd φ Q : 0 M
30 9 a1i φ Q = i 0 M V i X
31 fveq2 i = 0 V i = V 0
32 31 oveq1d i = 0 V i X = V 0 X
33 32 adantl φ i = 0 V i X = V 0 X
34 nnssnn0 0
35 34 a1i φ 0
36 nn0uz 0 = 0
37 35 36 sseqtrdi φ 0
38 37 3 sseldd φ M 0
39 eluzfz1 M 0 0 0 M
40 38 39 syl φ 0 0 M
41 25 40 ffvelrnd φ V 0
42 41 1 resubcld φ V 0 X
43 30 33 40 42 fvmptd φ Q 0 = V 0 X
44 2 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
45 3 44 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
46 4 45 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
47 46 simprd φ V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
48 47 simpld φ V 0 = - π + X V M = π + X
49 48 simpld φ V 0 = - π + X
50 49 oveq1d φ V 0 X = π + X - X
51 20 recnd φ π
52 1 recnd φ X
53 51 52 pncand φ π + X - X = π
54 43 50 53 3eqtrd φ Q 0 = π
55 20 rexrd φ π *
56 22 rexrd φ π *
57 5 leidd φ A A
58 5 6 5 57 16 eliccd φ A A B
59 8 58 sseldd φ A π π
60 iccgelb π * π * A π π π A
61 55 56 59 60 syl3anc φ π A
62 54 61 eqbrtrd φ Q 0 A
63 6 leidd φ B B
64 5 6 6 16 63 eliccd φ B A B
65 8 64 sseldd φ B π π
66 iccleub π * π * B π π B π
67 55 56 65 66 syl3anc φ B π
68 fveq2 i = M V i = V M
69 68 oveq1d i = M V i X = V M X
70 69 adantl φ i = M V i X = V M X
71 eluzfz2 M 0 M 0 M
72 38 71 syl φ M 0 M
73 25 72 ffvelrnd φ V M
74 73 1 resubcld φ V M X
75 30 70 72 74 fvmptd φ Q M = V M X
76 48 simprd φ V M = π + X
77 76 oveq1d φ V M X = π + X - X
78 22 recnd φ π
79 78 52 pncand φ π + X - X = π
80 75 77 79 3eqtrrd φ π = Q M
81 67 80 breqtrd φ B Q M
82 prfi A B Fin
83 82 a1i φ A B Fin
84 fzfid φ 0 M Fin
85 9 rnmptfi 0 M Fin ran Q Fin
86 84 85 syl φ ran Q Fin
87 infi ran Q Fin ran Q A B Fin
88 86 87 syl φ ran Q A B Fin
89 unfi A B Fin ran Q A B Fin A B ran Q A B Fin
90 83 88 89 syl2anc φ A B ran Q A B Fin
91 10 90 eqeltrid φ T Fin
92 5 6 jca φ A B
93 prssg A B A B A B
94 5 6 93 syl2anc φ A B A B
95 92 94 mpbid φ A B
96 inss2 ran Q A B A B
97 ioossre A B
98 96 97 sstri ran Q A B
99 98 a1i φ ran Q A B
100 95 99 unssd φ A B ran Q A B
101 10 100 eqsstrid φ T
102 91 101 12 11 fourierdlem36 φ S Isom < , < 0 N T
103 eqid sup x 0 ..^ M | Q x S J < = sup x 0 ..^ M | Q x S J <
104 3 5 6 16 29 62 81 13 10 102 103 fourierdlem20 φ i 0 ..^ M S J S J + 1 Q i Q i + 1
105 15 biimpi χ φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1
106 simp-4l φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 φ
107 105 106 syl χ φ
108 simplr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k 0 ..^ M
109 105 108 syl χ k 0 ..^ M
110 107 109 jca χ φ k 0 ..^ M
111 simp-4r φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 i 0 ..^ M
112 105 111 syl χ i 0 ..^ M
113 elfzofz k 0 ..^ M k 0 M
114 113 ad2antlr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k 0 M
115 105 114 syl χ k 0 M
116 107 25 syl χ V : 0 M
117 116 115 ffvelrnd χ V k
118 107 1 syl χ X
119 117 118 resubcld χ V k X
120 fveq2 i = k V i = V k
121 120 oveq1d i = k V i X = V k X
122 121 9 fvmptg k 0 M V k X Q k = V k X
123 115 119 122 syl2anc χ Q k = V k X
124 123 119 eqeltrd χ Q k
125 29 adantr φ i 0 ..^ M Q : 0 M
126 fzofzp1 i 0 ..^ M i + 1 0 M
127 126 adantl φ i 0 ..^ M i + 1 0 M
128 125 127 ffvelrnd φ i 0 ..^ M Q i + 1
129 107 112 128 syl2anc χ Q i + 1
130 isof1o S Isom < , < 0 N T S : 0 N 1-1 onto T
131 102 130 syl φ S : 0 N 1-1 onto T
132 f1of S : 0 N 1-1 onto T S : 0 N T
133 131 132 syl φ S : 0 N T
134 fzofzp1 J 0 ..^ N J + 1 0 N
135 13 134 syl φ J + 1 0 N
136 133 135 ffvelrnd φ S J + 1 T
137 101 136 sseldd φ S J + 1
138 107 137 syl χ S J + 1
139 elfzofz J 0 ..^ N J 0 N
140 13 139 syl φ J 0 N
141 133 140 ffvelrnd φ S J T
142 101 141 sseldd φ S J
143 107 142 syl χ S J
144 105 simprd χ S J S J + 1 Q k Q k + 1
145 124 rexrd χ Q k *
146 29 adantr φ k 0 ..^ M Q : 0 M
147 fzofzp1 k 0 ..^ M k + 1 0 M
148 147 adantl φ k 0 ..^ M k + 1 0 M
149 146 148 ffvelrnd φ k 0 ..^ M Q k + 1
150 149 rexrd φ k 0 ..^ M Q k + 1 *
151 110 150 syl χ Q k + 1 *
152 143 rexrd χ S J *
153 138 rexrd χ S J + 1 *
154 elfzoelz J 0 ..^ N J
155 154 zred J 0 ..^ N J
156 155 ltp1d J 0 ..^ N J < J + 1
157 13 156 syl φ J < J + 1
158 isoeq5 T = A B ran Q A B S Isom < , < 0 N T S Isom < , < 0 N A B ran Q A B
159 10 158 ax-mp S Isom < , < 0 N T S Isom < , < 0 N A B ran Q A B
160 102 159 sylib φ S Isom < , < 0 N A B ran Q A B
161 isorel S Isom < , < 0 N A B ran Q A B J 0 N J + 1 0 N J < J + 1 S J < S J + 1
162 160 140 135 161 syl12anc φ J < J + 1 S J < S J + 1
163 157 162 mpbid φ S J < S J + 1
164 107 163 syl χ S J < S J + 1
165 145 151 152 153 164 ioossioobi χ S J S J + 1 Q k Q k + 1 Q k S J S J + 1 Q k + 1
166 144 165 mpbid χ Q k S J S J + 1 Q k + 1
167 166 simpld χ Q k S J
168 124 143 138 167 164 lelttrd χ Q k < S J + 1
169 elfzofz i 0 ..^ M i 0 M
170 169 ad2antlr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 i 0 M
171 170 ad2antrr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 i 0 M
172 105 171 syl χ i 0 M
173 107 172 28 syl2anc χ V i X
174 9 fvmpt2 i 0 M V i X Q i = V i X
175 172 173 174 syl2anc χ Q i = V i X
176 175 173 eqeltrd χ Q i
177 simpllr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 S J S J + 1 Q i Q i + 1
178 105 177 syl χ S J S J + 1 Q i Q i + 1
179 176 129 143 138 164 178 fourierdlem10 χ Q i S J S J + 1 Q i + 1
180 179 simprd χ S J + 1 Q i + 1
181 124 138 129 168 180 ltletrd χ Q k < Q i + 1
182 124 129 118 181 ltadd2dd χ X + Q k < X + Q i + 1
183 123 oveq2d χ X + Q k = X + V k - X
184 107 52 syl χ X
185 117 recnd χ V k
186 184 185 pncan3d χ X + V k - X = V k
187 183 186 eqtr2d χ V k = X + Q k
188 112 126 syl χ i + 1 0 M
189 25 adantr φ i 0 ..^ M V : 0 M
190 189 127 ffvelrnd φ i 0 ..^ M V i + 1
191 107 112 190 syl2anc χ V i + 1
192 191 118 resubcld χ V i + 1 X
193 188 192 jca χ i + 1 0 M V i + 1 X
194 eleq1 k = i + 1 k 0 M i + 1 0 M
195 fveq2 k = i + 1 V k = V i + 1
196 195 oveq1d k = i + 1 V k X = V i + 1 X
197 196 eleq1d k = i + 1 V k X V i + 1 X
198 194 197 anbi12d k = i + 1 k 0 M V k X i + 1 0 M V i + 1 X
199 fveq2 k = i + 1 Q k = Q i + 1
200 199 196 eqeq12d k = i + 1 Q k = V k X Q i + 1 = V i + 1 X
201 198 200 imbi12d k = i + 1 k 0 M V k X Q k = V k X i + 1 0 M V i + 1 X Q i + 1 = V i + 1 X
202 201 122 vtoclg i + 1 0 M i + 1 0 M V i + 1 X Q i + 1 = V i + 1 X
203 188 193 202 sylc χ Q i + 1 = V i + 1 X
204 203 oveq2d χ X + Q i + 1 = X + V i + 1 - X
205 191 recnd χ V i + 1
206 184 205 pncan3d χ X + V i + 1 - X = V i + 1
207 204 206 eqtr2d χ V i + 1 = X + Q i + 1
208 182 187 207 3brtr4d χ V k < V i + 1
209 eleq1w l = i l 0 ..^ M i 0 ..^ M
210 209 anbi2d l = i φ k 0 ..^ M l 0 ..^ M φ k 0 ..^ M i 0 ..^ M
211 oveq1 l = i l + 1 = i + 1
212 211 fveq2d l = i V l + 1 = V i + 1
213 212 breq2d l = i V k < V l + 1 V k < V i + 1
214 210 213 anbi12d l = i φ k 0 ..^ M l 0 ..^ M V k < V l + 1 φ k 0 ..^ M i 0 ..^ M V k < V i + 1
215 fveq2 l = i V l = V i
216 215 breq2d l = i V k V l V k V i
217 214 216 imbi12d l = i φ k 0 ..^ M l 0 ..^ M V k < V l + 1 V k V l φ k 0 ..^ M i 0 ..^ M V k < V i + 1 V k V i
218 eleq1w h = k h 0 ..^ M k 0 ..^ M
219 218 anbi2d h = k φ h 0 ..^ M φ k 0 ..^ M
220 219 anbi1d h = k φ h 0 ..^ M l 0 ..^ M φ k 0 ..^ M l 0 ..^ M
221 fveq2 h = k V h = V k
222 221 breq1d h = k V h < V l + 1 V k < V l + 1
223 220 222 anbi12d h = k φ h 0 ..^ M l 0 ..^ M V h < V l + 1 φ k 0 ..^ M l 0 ..^ M V k < V l + 1
224 221 breq1d h = k V h V l V k V l
225 223 224 imbi12d h = k φ h 0 ..^ M l 0 ..^ M V h < V l + 1 V h V l φ k 0 ..^ M l 0 ..^ M V k < V l + 1 V k V l
226 elfzoelz h 0 ..^ M h
227 226 ad3antlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 h
228 elfzoelz l 0 ..^ M l
229 228 ad2antlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 l
230 simplr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 ¬ h < l + 1 V h < V l + 1
231 25 adantr φ l 0 ..^ M V : 0 M
232 fzofzp1 l 0 ..^ M l + 1 0 M
233 232 adantl φ l 0 ..^ M l + 1 0 M
234 231 233 ffvelrnd φ l 0 ..^ M V l + 1
235 234 adantlr φ h 0 ..^ M l 0 ..^ M V l + 1
236 235 adantr φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 V l + 1
237 25 adantr φ h 0 ..^ M V : 0 M
238 elfzofz h 0 ..^ M h 0 M
239 238 adantl φ h 0 ..^ M h 0 M
240 237 239 ffvelrnd φ h 0 ..^ M V h
241 240 ad2antrr φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 V h
242 228 zred l 0 ..^ M l
243 peano2re l l + 1
244 242 243 syl l 0 ..^ M l + 1
245 244 ad2antlr φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 l + 1
246 226 zred h 0 ..^ M h
247 246 ad3antlr φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 h
248 simpr φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 ¬ h < l + 1
249 245 247 248 nltled φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 l + 1 h
250 228 peano2zd l 0 ..^ M l + 1
251 250 ad2antlr h 0 ..^ M l 0 ..^ M l + 1 h l + 1
252 226 ad2antrr h 0 ..^ M l 0 ..^ M l + 1 h h
253 simpr h 0 ..^ M l 0 ..^ M l + 1 h l + 1 h
254 eluz2 h l + 1 l + 1 h l + 1 h
255 251 252 253 254 syl3anbrc h 0 ..^ M l 0 ..^ M l + 1 h h l + 1
256 255 adantlll φ h 0 ..^ M l 0 ..^ M l + 1 h h l + 1
257 simplll φ h 0 ..^ M l 0 ..^ M i l + 1 h φ
258 0zd h 0 ..^ M l 0 ..^ M i l + 1 h 0
259 elfzoel2 h 0 ..^ M M
260 259 ad2antrr h 0 ..^ M l 0 ..^ M i l + 1 h M
261 elfzelz i l + 1 h i
262 261 adantl h 0 ..^ M l 0 ..^ M i l + 1 h i
263 0red l 0 ..^ M i l + 1 h 0
264 261 zred i l + 1 h i
265 264 adantl l 0 ..^ M i l + 1 h i
266 242 adantr l 0 ..^ M i l + 1 h l
267 elfzole1 l 0 ..^ M 0 l
268 267 adantr l 0 ..^ M i l + 1 h 0 l
269 266 243 syl l 0 ..^ M i l + 1 h l + 1
270 266 ltp1d l 0 ..^ M i l + 1 h l < l + 1
271 elfzle1 i l + 1 h l + 1 i
272 271 adantl l 0 ..^ M i l + 1 h l + 1 i
273 266 269 265 270 272 ltletrd l 0 ..^ M i l + 1 h l < i
274 263 266 265 268 273 lelttrd l 0 ..^ M i l + 1 h 0 < i
275 263 265 274 ltled l 0 ..^ M i l + 1 h 0 i
276 275 adantll h 0 ..^ M l 0 ..^ M i l + 1 h 0 i
277 264 adantl h 0 ..^ M i l + 1 h i
278 259 zred h 0 ..^ M M
279 278 adantr h 0 ..^ M i l + 1 h M
280 246 adantr h 0 ..^ M i l + 1 h h
281 elfzle2 i l + 1 h i h
282 281 adantl h 0 ..^ M i l + 1 h i h
283 elfzolt2 h 0 ..^ M h < M
284 283 adantr h 0 ..^ M i l + 1 h h < M
285 277 280 279 282 284 lelttrd h 0 ..^ M i l + 1 h i < M
286 277 279 285 ltled h 0 ..^ M i l + 1 h i M
287 286 adantlr h 0 ..^ M l 0 ..^ M i l + 1 h i M
288 258 260 262 276 287 elfzd h 0 ..^ M l 0 ..^ M i l + 1 h i 0 M
289 288 adantlll φ h 0 ..^ M l 0 ..^ M i l + 1 h i 0 M
290 257 289 26 syl2anc φ h 0 ..^ M l 0 ..^ M i l + 1 h V i
291 290 adantlr φ h 0 ..^ M l 0 ..^ M l + 1 h i l + 1 h V i
292 simplll φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 φ
293 0zd l 0 ..^ M i l + 1 h 1 0
294 elfzelz i l + 1 h 1 i
295 294 adantl l 0 ..^ M i l + 1 h 1 i
296 0red l 0 ..^ M i l + 1 h 1 0
297 295 zred l 0 ..^ M i l + 1 h 1 i
298 242 adantr l 0 ..^ M i l + 1 h 1 l
299 267 adantr l 0 ..^ M i l + 1 h 1 0 l
300 298 243 syl l 0 ..^ M i l + 1 h 1 l + 1
301 298 ltp1d l 0 ..^ M i l + 1 h 1 l < l + 1
302 elfzle1 i l + 1 h 1 l + 1 i
303 302 adantl l 0 ..^ M i l + 1 h 1 l + 1 i
304 298 300 297 301 303 ltletrd l 0 ..^ M i l + 1 h 1 l < i
305 296 298 297 299 304 lelttrd l 0 ..^ M i l + 1 h 1 0 < i
306 296 297 305 ltled l 0 ..^ M i l + 1 h 1 0 i
307 eluz2 i 0 0 i 0 i
308 293 295 306 307 syl3anbrc l 0 ..^ M i l + 1 h 1 i 0
309 308 adantll φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 i 0
310 elfzoel2 l 0 ..^ M M
311 310 ad2antlr φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 M
312 294 zred i l + 1 h 1 i
313 312 adantl h 0 ..^ M i l + 1 h 1 i
314 peano2rem h h 1
315 246 314 syl h 0 ..^ M h 1
316 315 adantr h 0 ..^ M i l + 1 h 1 h 1
317 278 adantr h 0 ..^ M i l + 1 h 1 M
318 elfzle2 i l + 1 h 1 i h 1
319 318 adantl h 0 ..^ M i l + 1 h 1 i h 1
320 246 ltm1d h 0 ..^ M h 1 < h
321 315 246 278 320 283 lttrd h 0 ..^ M h 1 < M
322 321 adantr h 0 ..^ M i l + 1 h 1 h 1 < M
323 313 316 317 319 322 lelttrd h 0 ..^ M i l + 1 h 1 i < M
324 323 adantll φ h 0 ..^ M i l + 1 h 1 i < M
325 324 adantlr φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 i < M
326 elfzo2 i 0 ..^ M i 0 M i < M
327 309 311 325 326 syl3anbrc φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 i 0 ..^ M
328 169 26 sylan2 φ i 0 ..^ M V i
329 47 simprd φ i 0 ..^ M V i < V i + 1
330 329 r19.21bi φ i 0 ..^ M V i < V i + 1
331 328 190 330 ltled φ i 0 ..^ M V i V i + 1
332 292 327 331 syl2anc φ h 0 ..^ M l 0 ..^ M i l + 1 h 1 V i V i + 1
333 332 adantlr φ h 0 ..^ M l 0 ..^ M l + 1 h i l + 1 h 1 V i V i + 1
334 256 291 333 monoord φ h 0 ..^ M l 0 ..^ M l + 1 h V l + 1 V h
335 249 334 syldan φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 V l + 1 V h
336 236 241 335 lensymd φ h 0 ..^ M l 0 ..^ M ¬ h < l + 1 ¬ V h < V l + 1
337 336 adantlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 ¬ h < l + 1 ¬ V h < V l + 1
338 230 337 condan φ h 0 ..^ M l 0 ..^ M V h < V l + 1 h < l + 1
339 zleltp1 h l h l h < l + 1
340 227 229 339 syl2anc φ h 0 ..^ M l 0 ..^ M V h < V l + 1 h l h < l + 1
341 338 340 mpbird φ h 0 ..^ M l 0 ..^ M V h < V l + 1 h l
342 eluz2 l h h l h l
343 227 229 341 342 syl3anbrc φ h 0 ..^ M l 0 ..^ M V h < V l + 1 l h
344 25 ad3antrrr φ h 0 ..^ M l 0 ..^ M i h l V : 0 M
345 0zd h 0 ..^ M l 0 ..^ M i h l 0
346 259 ad2antrr h 0 ..^ M l 0 ..^ M i h l M
347 elfzelz i h l i
348 347 adantl h 0 ..^ M l 0 ..^ M i h l i
349 0red h 0 ..^ M i h l 0
350 246 adantr h 0 ..^ M i h l h
351 347 zred i h l i
352 351 adantl h 0 ..^ M i h l i
353 elfzole1 h 0 ..^ M 0 h
354 353 adantr h 0 ..^ M i h l 0 h
355 elfzle1 i h l h i
356 355 adantl h 0 ..^ M i h l h i
357 349 350 352 354 356 letrd h 0 ..^ M i h l 0 i
358 357 adantlr h 0 ..^ M l 0 ..^ M i h l 0 i
359 351 adantl l 0 ..^ M i h l i
360 310 zred l 0 ..^ M M
361 360 adantr l 0 ..^ M i h l M
362 242 adantr l 0 ..^ M i h l l
363 elfzle2 i h l i l
364 363 adantl l 0 ..^ M i h l i l
365 elfzolt2 l 0 ..^ M l < M
366 365 adantr l 0 ..^ M i h l l < M
367 359 362 361 364 366 lelttrd l 0 ..^ M i h l i < M
368 359 361 367 ltled l 0 ..^ M i h l i M
369 368 adantll h 0 ..^ M l 0 ..^ M i h l i M
370 345 346 348 358 369 elfzd h 0 ..^ M l 0 ..^ M i h l i 0 M
371 370 adantlll φ h 0 ..^ M l 0 ..^ M i h l i 0 M
372 344 371 ffvelrnd φ h 0 ..^ M l 0 ..^ M i h l V i
373 372 adantlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l V i
374 simp-4l φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 φ
375 0zd h 0 ..^ M i h l 1 0
376 elfzelz i h l 1 i
377 376 adantl h 0 ..^ M i h l 1 i
378 0red h 0 ..^ M i h l 1 0
379 246 adantr h 0 ..^ M i h l 1 h
380 377 zred h 0 ..^ M i h l 1 i
381 353 adantr h 0 ..^ M i h l 1 0 h
382 elfzle1 i h l 1 h i
383 382 adantl h 0 ..^ M i h l 1 h i
384 378 379 380 381 383 letrd h 0 ..^ M i h l 1 0 i
385 375 377 384 307 syl3anbrc h 0 ..^ M i h l 1 i 0
386 385 adantll φ h 0 ..^ M i h l 1 i 0
387 386 ad4ant14 φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 i 0
388 310 ad3antlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 M
389 376 zred i h l 1 i
390 389 adantl l 0 ..^ M i h l 1 i
391 242 adantr l 0 ..^ M i h l 1 l
392 360 adantr l 0 ..^ M i h l 1 M
393 elfzle2 i h l 1 i l 1
394 393 adantl l 0 ..^ M i h l 1 i l 1
395 zltlem1 i l i < l i l 1
396 376 228 395 syl2anr l 0 ..^ M i h l 1 i < l i l 1
397 394 396 mpbird l 0 ..^ M i h l 1 i < l
398 365 adantr l 0 ..^ M i h l 1 l < M
399 390 391 392 397 398 lttrd l 0 ..^ M i h l 1 i < M
400 399 adantll φ h 0 ..^ M l 0 ..^ M i h l 1 i < M
401 400 adantlr φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 i < M
402 387 388 401 326 syl3anbrc φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 i 0 ..^ M
403 374 402 331 syl2anc φ h 0 ..^ M l 0 ..^ M V h < V l + 1 i h l 1 V i V i + 1
404 343 373 403 monoord φ h 0 ..^ M l 0 ..^ M V h < V l + 1 V h V l
405 225 404 chvarvv φ k 0 ..^ M l 0 ..^ M V k < V l + 1 V k V l
406 217 405 chvarvv φ k 0 ..^ M i 0 ..^ M V k < V i + 1 V k V i
407 110 112 208 406 syl21anc χ V k V i
408 107 112 jca χ φ i 0 ..^ M
409 110 149 syl χ Q k + 1
410 179 simpld χ Q i S J
411 176 143 138 410 164 lelttrd χ Q i < S J + 1
412 166 simprd χ S J + 1 Q k + 1
413 176 138 409 411 412 ltletrd χ Q i < Q k + 1
414 176 409 118 413 ltadd2dd χ X + Q i < X + Q k + 1
415 175 oveq2d χ X + Q i = X + V i - X
416 107 172 26 syl2anc χ V i
417 416 recnd χ V i
418 184 417 pncan3d χ X + V i - X = V i
419 415 418 eqtr2d χ V i = X + Q i
420 9 a1i φ k 0 ..^ M Q = i 0 M V i X
421 fveq2 i = k + 1 V i = V k + 1
422 421 oveq1d i = k + 1 V i X = V k + 1 X
423 422 adantl φ k 0 ..^ M i = k + 1 V i X = V k + 1 X
424 25 adantr φ k 0 ..^ M V : 0 M
425 424 148 ffvelrnd φ k 0 ..^ M V k + 1
426 1 adantr φ k 0 ..^ M X
427 425 426 resubcld φ k 0 ..^ M V k + 1 X
428 420 423 148 427 fvmptd φ k 0 ..^ M Q k + 1 = V k + 1 X
429 107 109 428 syl2anc χ Q k + 1 = V k + 1 X
430 429 oveq2d χ X + Q k + 1 = X + V k + 1 - X
431 110 425 syl χ V k + 1
432 431 recnd χ V k + 1
433 184 432 pncan3d χ X + V k + 1 - X = V k + 1
434 430 433 eqtr2d χ V k + 1 = X + Q k + 1
435 414 419 434 3brtr4d χ V i < V k + 1
436 eleq1w l = k l 0 ..^ M k 0 ..^ M
437 436 anbi2d l = k φ i 0 ..^ M l 0 ..^ M φ i 0 ..^ M k 0 ..^ M
438 oveq1 l = k l + 1 = k + 1
439 438 fveq2d l = k V l + 1 = V k + 1
440 439 breq2d l = k V i < V l + 1 V i < V k + 1
441 437 440 anbi12d l = k φ i 0 ..^ M l 0 ..^ M V i < V l + 1 φ i 0 ..^ M k 0 ..^ M V i < V k + 1
442 fveq2 l = k V l = V k
443 442 breq2d l = k V i V l V i V k
444 441 443 imbi12d l = k φ i 0 ..^ M l 0 ..^ M V i < V l + 1 V i V l φ i 0 ..^ M k 0 ..^ M V i < V k + 1 V i V k
445 eleq1w h = i h 0 ..^ M i 0 ..^ M
446 445 anbi2d h = i φ h 0 ..^ M φ i 0 ..^ M
447 446 anbi1d h = i φ h 0 ..^ M l 0 ..^ M φ i 0 ..^ M l 0 ..^ M
448 fveq2 h = i V h = V i
449 448 breq1d h = i V h < V l + 1 V i < V l + 1
450 447 449 anbi12d h = i φ h 0 ..^ M l 0 ..^ M V h < V l + 1 φ i 0 ..^ M l 0 ..^ M V i < V l + 1
451 448 breq1d h = i V h V l V i V l
452 450 451 imbi12d h = i φ h 0 ..^ M l 0 ..^ M V h < V l + 1 V h V l φ i 0 ..^ M l 0 ..^ M V i < V l + 1 V i V l
453 452 404 chvarvv φ i 0 ..^ M l 0 ..^ M V i < V l + 1 V i V l
454 444 453 chvarvv φ i 0 ..^ M k 0 ..^ M V i < V k + 1 V i V k
455 408 109 435 454 syl21anc χ V i V k
456 117 416 letri3d χ V k = V i V k V i V i V k
457 407 455 456 mpbir2and χ V k = V i
458 2 3 4 fourierdlem34 φ V : 0 M 1-1
459 107 458 syl χ V : 0 M 1-1
460 f1fveq V : 0 M 1-1 k 0 M i 0 M V k = V i k = i
461 459 115 172 460 syl12anc χ V k = V i k = i
462 457 461 mpbid χ k = i
463 15 462 sylbir φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
464 463 ex φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
465 simpl S J S J + 1 Q i Q i + 1 k = i S J S J + 1 Q i Q i + 1
466 fveq2 k = i Q k = Q i
467 oveq1 k = i k + 1 = i + 1
468 467 fveq2d k = i Q k + 1 = Q i + 1
469 466 468 oveq12d k = i Q k Q k + 1 = Q i Q i + 1
470 469 eqcomd k = i Q i Q i + 1 = Q k Q k + 1
471 470 adantl S J S J + 1 Q i Q i + 1 k = i Q i Q i + 1 = Q k Q k + 1
472 465 471 sseqtrd S J S J + 1 Q i Q i + 1 k = i S J S J + 1 Q k Q k + 1
473 472 ex S J S J + 1 Q i Q i + 1 k = i S J S J + 1 Q k Q k + 1
474 473 ad2antlr φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M k = i S J S J + 1 Q k Q k + 1
475 464 474 impbid φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
476 475 ralrimiva φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
477 476 ex φ i 0 ..^ M S J S J + 1 Q i Q i + 1 k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
478 477 reximdva φ i 0 ..^ M S J S J + 1 Q i Q i + 1 i 0 ..^ M k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
479 104 478 mpd φ i 0 ..^ M k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
480 reu6 ∃! k 0 ..^ M S J S J + 1 Q k Q k + 1 i 0 ..^ M k 0 ..^ M S J S J + 1 Q k Q k + 1 k = i
481 479 480 sylibr φ ∃! k 0 ..^ M S J S J + 1 Q k Q k + 1
482 fveq2 i = k Q i = Q k
483 oveq1 i = k i + 1 = k + 1
484 483 fveq2d i = k Q i + 1 = Q k + 1
485 482 484 oveq12d i = k Q i Q i + 1 = Q k Q k + 1
486 485 sseq2d i = k S J S J + 1 Q i Q i + 1 S J S J + 1 Q k Q k + 1
487 486 cbvreuvw ∃! i 0 ..^ M S J S J + 1 Q i Q i + 1 ∃! k 0 ..^ M S J S J + 1 Q k Q k + 1
488 481 487 sylibr φ ∃! i 0 ..^ M S J S J + 1 Q i Q i + 1
489 riotacl ∃! i 0 ..^ M S J S J + 1 Q i Q i + 1 ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 0 ..^ M
490 488 489 syl φ ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 0 ..^ M
491 14 490 eqeltrid φ U 0 ..^ M
492 14 eqcomi ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 = U
493 492 a1i φ ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 = U
494 fveq2 i = U Q i = Q U
495 oveq1 i = U i + 1 = U + 1
496 495 fveq2d i = U Q i + 1 = Q U + 1
497 494 496 oveq12d i = U Q i Q i + 1 = Q U Q U + 1
498 497 sseq2d i = U S J S J + 1 Q i Q i + 1 S J S J + 1 Q U Q U + 1
499 498 riota2 U 0 ..^ M ∃! i 0 ..^ M S J S J + 1 Q i Q i + 1 S J S J + 1 Q U Q U + 1 ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 = U
500 491 488 499 syl2anc φ S J S J + 1 Q U Q U + 1 ι i 0 ..^ M | S J S J + 1 Q i Q i + 1 = U
501 493 500 mpbird φ S J S J + 1 Q U Q U + 1
502 491 501 jca φ U 0 ..^ M S J S J + 1 Q U Q U + 1