Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem52.tf |
|
2 |
|
fourierdlem52.n |
|
3 |
|
fourierdlem52.s |
|
4 |
|
fourierdlem52.a |
|
5 |
|
fourierdlem52.b |
|
6 |
|
fourierdlem52.t |
|
7 |
|
fourierdlem52.at |
|
8 |
|
fourierdlem52.bt |
|
9 |
4 5
|
iccssred |
|
10 |
6 9
|
sstrd |
|
11 |
1 10 3 2
|
fourierdlem36 |
|
12 |
|
isof1o |
|
13 |
|
f1of |
|
14 |
11 12 13
|
3syl |
|
15 |
14 6
|
fssd |
|
16 |
|
f1ofo |
|
17 |
11 12 16
|
3syl |
|
18 |
|
foelrn |
|
19 |
17 7 18
|
syl2anc |
|
20 |
|
elfzle1 |
|
21 |
20
|
adantl |
|
22 |
11
|
adantr |
|
23 |
|
ressxr |
|
24 |
10 23
|
sstrdi |
|
25 |
24
|
adantr |
|
26 |
|
fzssz |
|
27 |
|
zssre |
|
28 |
27 23
|
sstri |
|
29 |
26 28
|
sstri |
|
30 |
25 29
|
jctil |
|
31 |
|
hashcl |
|
32 |
1 31
|
syl |
|
33 |
7
|
ne0d |
|
34 |
|
hashge1 |
|
35 |
1 33 34
|
syl2anc |
|
36 |
|
elnnnn0c |
|
37 |
32 35 36
|
sylanbrc |
|
38 |
|
nnm1nn0 |
|
39 |
37 38
|
syl |
|
40 |
2 39
|
eqeltrid |
|
41 |
|
nn0uz |
|
42 |
40 41
|
eleqtrdi |
|
43 |
|
eluzfz1 |
|
44 |
42 43
|
syl |
|
45 |
44
|
anim1i |
|
46 |
|
leisorel |
|
47 |
22 30 45 46
|
syl3anc |
|
48 |
21 47
|
mpbid |
|
49 |
48
|
3adant3 |
|
50 |
|
eqcom |
|
51 |
50
|
biimpi |
|
52 |
51
|
3ad2ant3 |
|
53 |
49 52
|
breqtrd |
|
54 |
53
|
rexlimdv3a |
|
55 |
19 54
|
mpd |
|
56 |
4
|
rexrd |
|
57 |
5
|
rexrd |
|
58 |
15 44
|
ffvelrnd |
|
59 |
|
iccgelb |
|
60 |
56 57 58 59
|
syl3anc |
|
61 |
9 58
|
sseldd |
|
62 |
61 4
|
letri3d |
|
63 |
55 60 62
|
mpbir2and |
|
64 |
|
eluzfz2 |
|
65 |
42 64
|
syl |
|
66 |
15 65
|
ffvelrnd |
|
67 |
|
iccleub |
|
68 |
56 57 66 67
|
syl3anc |
|
69 |
|
foelrn |
|
70 |
17 8 69
|
syl2anc |
|
71 |
|
simp3 |
|
72 |
|
elfzle2 |
|
73 |
72
|
3ad2ant2 |
|
74 |
11
|
3ad2ant1 |
|
75 |
30
|
3adant3 |
|
76 |
|
simp2 |
|
77 |
65
|
3ad2ant1 |
|
78 |
|
leisorel |
|
79 |
74 75 76 77 78
|
syl112anc |
|
80 |
73 79
|
mpbid |
|
81 |
71 80
|
eqbrtrd |
|
82 |
81
|
rexlimdv3a |
|
83 |
70 82
|
mpd |
|
84 |
9 66
|
sseldd |
|
85 |
84 5
|
letri3d |
|
86 |
68 83 85
|
mpbir2and |
|
87 |
15 63 86
|
jca31 |
|