Metamath Proof Explorer


Theorem fourierdlem53

Description: The limit of F ( s ) at ( X + D ) is the limit of F ( X + s ) at D . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem53.1 φ F :
fourierdlem53.2 φ X
fourierdlem53.3 φ A
fourierdlem53.g G = s A F X + s
fourierdlem53.xps φ s A X + s B
fourierdlem53.b φ B
fourierdlem53.sned φ s A s D
fourierdlem53.c φ C F B lim X + D
fourierdlem53.d φ D
Assertion fourierdlem53 φ C G lim D

Proof

Step Hyp Ref Expression
1 fourierdlem53.1 φ F :
2 fourierdlem53.2 φ X
3 fourierdlem53.3 φ A
4 fourierdlem53.g G = s A F X + s
5 fourierdlem53.xps φ s A X + s B
6 fourierdlem53.b φ B
7 fourierdlem53.sned φ s A s D
8 fourierdlem53.c φ C F B lim X + D
9 fourierdlem53.d φ D
10 1 6 fssresd φ F B : B
11 10 fdmd φ dom F B = B
12 11 eqcomd φ B = dom F B
13 12 adantr φ s A B = dom F B
14 5 13 eleqtrd φ s A X + s dom F B
15 2 recnd φ X
16 15 adantr φ s A X
17 3 sselda φ s A s
18 17 recnd φ s A s
19 9 adantr φ s A D
20 16 18 19 7 addneintrd φ s A X + s X + D
21 20 neneqd φ s A ¬ X + s = X + D
22 2 adantr φ s A X
23 22 17 readdcld φ s A X + s
24 elsng X + s X + s X + D X + s = X + D
25 23 24 syl φ s A X + s X + D X + s = X + D
26 21 25 mtbird φ s A ¬ X + s X + D
27 14 26 eldifd φ s A X + s dom F B X + D
28 27 ralrimiva φ s A X + s dom F B X + D
29 eqid s A X + s = s A X + s
30 29 rnmptss s A X + s dom F B X + D ran s A X + s dom F B X + D
31 28 30 syl φ ran s A X + s dom F B X + D
32 eqid s A X = s A X
33 eqid s A s = s A s
34 ax-resscn
35 3 34 sstrdi φ A
36 32 35 15 9 constlimc φ X s A X lim D
37 35 33 9 idlimc φ D s A s lim D
38 32 33 29 16 18 36 37 addlimc φ X + D s A X + s lim D
39 31 38 8 limccog φ C F B s A X + s lim D
40 nfv s φ
41 40 29 5 rnmptssd φ ran s A X + s B
42 cores ran s A X + s B F B s A X + s = F s A X + s
43 41 42 syl φ F B s A X + s = F s A X + s
44 23 29 fmptd φ s A X + s : A
45 fcompt F : s A X + s : A F s A X + s = x A F s A X + s x
46 1 44 45 syl2anc φ F s A X + s = x A F s A X + s x
47 4 a1i φ G = s A F X + s
48 oveq2 s = x X + s = X + x
49 48 fveq2d s = x F X + s = F X + x
50 49 cbvmptv s A F X + s = x A F X + x
51 50 a1i φ s A F X + s = x A F X + x
52 eqidd φ x A s A X + s = s A X + s
53 48 adantl φ x A s = x X + s = X + x
54 simpr φ x A x A
55 2 adantr φ x A X
56 3 sselda φ x A x
57 55 56 readdcld φ x A X + x
58 52 53 54 57 fvmptd φ x A s A X + s x = X + x
59 58 eqcomd φ x A X + x = s A X + s x
60 59 fveq2d φ x A F X + x = F s A X + s x
61 60 mpteq2dva φ x A F X + x = x A F s A X + s x
62 47 51 61 3eqtrrd φ x A F s A X + s x = G
63 43 46 62 3eqtrd φ F B s A X + s = G
64 63 oveq1d φ F B s A X + s lim D = G lim D
65 39 64 eleqtrd φ C G lim D