Metamath Proof Explorer


Theorem fourierdlem56

Description: Derivative of the K function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem56.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem56.a φ A B π π 0
fourierdlem56.r4 φ s A B s 0
Assertion fourierdlem56 φ ds A B K s d s = s A B sin s 2 cos s 2 2 s sin s 2 2 2

Proof

Step Hyp Ref Expression
1 fourierdlem56.k K = s π π if s = 0 1 s 2 sin s 2
2 fourierdlem56.a φ A B π π 0
3 fourierdlem56.r4 φ s A B s 0
4 2 difss2d φ A B π π
5 4 sselda φ s A B s π π
6 1ex 1 V
7 ovex s 2 sin s 2 V
8 6 7 ifex if s = 0 1 s 2 sin s 2 V
9 8 a1i φ s A B if s = 0 1 s 2 sin s 2 V
10 1 fvmpt2 s π π if s = 0 1 s 2 sin s 2 V K s = if s = 0 1 s 2 sin s 2
11 5 9 10 syl2anc φ s A B K s = if s = 0 1 s 2 sin s 2
12 3 neneqd φ s A B ¬ s = 0
13 12 iffalsed φ s A B if s = 0 1 s 2 sin s 2 = s 2 sin s 2
14 elioore s A B s
15 14 adantl φ s A B s
16 15 recnd φ s A B s
17 16 halfcld φ s A B s 2
18 17 sincld φ s A B sin s 2
19 2cnd φ s A B 2
20 fourierdlem44 s π π s 0 sin s 2 0
21 5 3 20 syl2anc φ s A B sin s 2 0
22 2ne0 2 0
23 22 a1i φ s A B 2 0
24 16 18 19 21 23 divdiv1d φ s A B s sin s 2 2 = s sin s 2 2
25 18 19 mulcomd φ s A B sin s 2 2 = 2 sin s 2
26 25 oveq2d φ s A B s sin s 2 2 = s 2 sin s 2
27 24 26 eqtr2d φ s A B s 2 sin s 2 = s sin s 2 2
28 11 13 27 3eqtrd φ s A B K s = s sin s 2 2
29 28 mpteq2dva φ s A B K s = s A B s sin s 2 2
30 29 oveq2d φ ds A B K s d s = ds A B s sin s 2 2 d s
31 reelprrecn
32 31 a1i φ
33 16 18 21 divcld φ s A B s sin s 2
34 1red φ s A B 1
35 15 rehalfcld φ s A B s 2
36 35 resincld φ s A B sin s 2
37 34 36 remulcld φ s A B 1 sin s 2
38 35 recoscld φ s A B cos s 2
39 34 rehalfcld φ s A B 1 2
40 38 39 remulcld φ s A B cos s 2 1 2
41 40 15 remulcld φ s A B cos s 2 1 2 s
42 37 41 resubcld φ s A B 1 sin s 2 cos s 2 1 2 s
43 36 resqcld φ s A B sin s 2 2
44 2z 2
45 44 a1i φ s A B 2
46 18 21 45 expne0d φ s A B sin s 2 2 0
47 42 43 46 redivcld φ s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2
48 1cnd φ s A B 1
49 recn s s
50 49 adantl φ s s
51 1red φ s 1
52 32 dvmptid φ ds s d s = s 1
53 ioossre A B
54 53 a1i φ A B
55 eqid TopOpen fld = TopOpen fld
56 55 tgioo2 topGen ran . = TopOpen fld 𝑡
57 iooretop A B topGen ran .
58 57 a1i φ A B topGen ran .
59 32 50 51 52 54 56 55 58 dvmptres φ ds A B s d s = s A B 1
60 elsni sin s 2 0 sin s 2 = 0
61 60 necon3ai sin s 2 0 ¬ sin s 2 0
62 21 61 syl φ s A B ¬ sin s 2 0
63 18 62 eldifd φ s A B sin s 2 0
64 17 coscld φ s A B cos s 2
65 48 halfcld φ s A B 1 2
66 64 65 mulcld φ s A B cos s 2 1 2
67 cnelprrecn
68 67 a1i φ
69 sinf sin :
70 69 a1i φ sin :
71 70 ffvelrnda φ x sin x
72 cosf cos :
73 72 a1i φ cos :
74 73 ffvelrnda φ x cos x
75 2cnd φ 2
76 22 a1i φ 2 0
77 32 16 34 59 75 76 dvmptdivc φ ds A B s 2 d s = s A B 1 2
78 ffn sin : sin Fn
79 69 78 ax-mp sin Fn
80 dffn5 sin Fn sin = x sin x
81 79 80 mpbi sin = x sin x
82 81 eqcomi x sin x = sin
83 82 oveq2i dx sin x d x = D sin
84 dvsin D sin = cos
85 ffn cos : cos Fn
86 72 85 ax-mp cos Fn
87 dffn5 cos Fn cos = x cos x
88 86 87 mpbi cos = x cos x
89 83 84 88 3eqtri dx sin x d x = x cos x
90 89 a1i φ dx sin x d x = x cos x
91 fveq2 x = s 2 sin x = sin s 2
92 fveq2 x = s 2 cos x = cos s 2
93 32 68 17 39 71 74 77 90 91 92 dvmptco φ ds A B sin s 2 d s = s A B cos s 2 1 2
94 32 16 48 59 63 66 93 dvmptdiv φ ds A B s sin s 2 d s = s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2
95 32 33 47 94 75 76 dvmptdivc φ ds A B s sin s 2 2 d s = s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2 2
96 14 recnd s A B s
97 96 halfcld s A B s 2
98 97 sincld s A B sin s 2
99 98 mulid2d s A B 1 sin s 2 = sin s 2
100 97 coscld s A B cos s 2
101 2cnd s A B 2
102 22 a1i s A B 2 0
103 100 101 102 divrecd s A B cos s 2 2 = cos s 2 1 2
104 103 eqcomd s A B cos s 2 1 2 = cos s 2 2
105 104 oveq1d s A B cos s 2 1 2 s = cos s 2 2 s
106 99 105 oveq12d s A B 1 sin s 2 cos s 2 1 2 s = sin s 2 cos s 2 2 s
107 106 oveq1d s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2 = sin s 2 cos s 2 2 s sin s 2 2
108 107 oveq1d s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2 2 = sin s 2 cos s 2 2 s sin s 2 2 2
109 108 mpteq2ia s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2 2 = s A B sin s 2 cos s 2 2 s sin s 2 2 2
110 109 a1i φ s A B 1 sin s 2 cos s 2 1 2 s sin s 2 2 2 = s A B sin s 2 cos s 2 2 s sin s 2 2 2
111 30 95 110 3eqtrd φ ds A B K s d s = s A B sin s 2 cos s 2 2 s sin s 2 2 2