Metamath Proof Explorer


Theorem fourierdlem62

Description: The function K is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem62.k K = y π π if y = 0 1 y 2 sin y 2
Assertion fourierdlem62 K : π π cn

Proof

Step Hyp Ref Expression
1 fourierdlem62.k K = y π π if y = 0 1 y 2 sin y 2
2 eqeq1 y = s y = 0 s = 0
3 id y = s y = s
4 oveq1 y = s y 2 = s 2
5 4 fveq2d y = s sin y 2 = sin s 2
6 5 oveq2d y = s 2 sin y 2 = 2 sin s 2
7 3 6 oveq12d y = s y 2 sin y 2 = s 2 sin s 2
8 2 7 ifbieq2d y = s if y = 0 1 y 2 sin y 2 = if s = 0 1 s 2 sin s 2
9 8 cbvmptv y π π if y = 0 1 y 2 sin y 2 = s π π if s = 0 1 s 2 sin s 2
10 1 9 eqtri K = s π π if s = 0 1 s 2 sin s 2
11 10 fourierdlem43 K : π π
12 ax-resscn
13 fss K : π π K : π π
14 11 12 13 mp2an K : π π
15 14 a1i s = 0 K : π π
16 difss π π 0 π π
17 elioore s π π s
18 17 ssriv π π
19 16 18 sstri π π 0
20 19 a1i π π 0
21 eqid x π π 0 x = x π π 0 x
22 19 sseli x π π 0 x
23 21 22 fmpti x π π 0 x : π π 0
24 23 a1i x π π 0 x : π π 0
25 eqid x π π 0 2 sin x 2 = x π π 0 2 sin x 2
26 2re 2
27 26 a1i x π π 0 2
28 22 rehalfcld x π π 0 x 2
29 28 resincld x π π 0 sin x 2
30 27 29 remulcld x π π 0 2 sin x 2
31 25 30 fmpti x π π 0 2 sin x 2 : π π 0
32 31 a1i x π π 0 2 sin x 2 : π π 0
33 iooretop π π topGen ran .
34 33 a1i π π topGen ran .
35 0re 0
36 negpilt0 π < 0
37 pipos 0 < π
38 pire π
39 38 renegcli π
40 39 rexri π *
41 38 rexri π *
42 elioo2 π * π * 0 π π 0 π < 0 0 < π
43 40 41 42 mp2an 0 π π 0 π < 0 0 < π
44 35 36 37 43 mpbir3an 0 π π
45 44 a1i 0 π π
46 eqid π π 0 = π π 0
47 1ex 1 V
48 eqid x π π 0 1 = x π π 0 1
49 47 48 dmmpti dom x π π 0 1 = π π 0
50 reelprrecn
51 50 a1i
52 12 sseli x x
53 52 adantl x x
54 1red x 1
55 51 dvmptid dx x d x = x 1
56 eqid TopOpen fld = TopOpen fld
57 56 tgioo2 topGen ran . = TopOpen fld 𝑡
58 sncldre 0 0 Clsd topGen ran .
59 35 58 ax-mp 0 Clsd topGen ran .
60 retopon topGen ran . TopOn
61 60 toponunii = topGen ran .
62 61 difopn π π topGen ran . 0 Clsd topGen ran . π π 0 topGen ran .
63 33 59 62 mp2an π π 0 topGen ran .
64 63 a1i π π 0 topGen ran .
65 51 53 54 55 20 57 56 64 dvmptres dx π π 0 x d x = x π π 0 1
66 65 mptru dx π π 0 x d x = x π π 0 1
67 66 eqcomi x π π 0 1 = dx π π 0 x d x
68 67 dmeqi dom x π π 0 1 = dom dx π π 0 x d x
69 49 68 eqtr3i π π 0 = dom dx π π 0 x d x
70 69 eqimssi π π 0 dom dx π π 0 x d x
71 70 a1i π π 0 dom dx π π 0 x d x
72 fvex cos x 2 V
73 eqid x π π 0 cos x 2 = x π π 0 cos x 2
74 72 73 dmmpti dom x π π 0 cos x 2 = π π 0
75 2cnd x 2
76 53 halfcld x x 2
77 76 sincld x sin x 2
78 75 77 mulcld x 2 sin x 2
79 76 coscld x cos x 2
80 2cnd x 2
81 2ne0 2 0
82 81 a1i x 2 0
83 52 80 82 divrec2d x x 2 = 1 2 x
84 83 fveq2d x sin x 2 = sin 1 2 x
85 84 oveq2d x 2 sin x 2 = 2 sin 1 2 x
86 85 mpteq2ia x 2 sin x 2 = x 2 sin 1 2 x
87 86 oveq2i dx 2 sin x 2 d x = dx 2 sin 1 2 x d x
88 resmpt x 2 sin 1 2 x = x 2 sin 1 2 x
89 12 88 ax-mp x 2 sin 1 2 x = x 2 sin 1 2 x
90 89 eqcomi x 2 sin 1 2 x = x 2 sin 1 2 x
91 90 oveq2i dx 2 sin 1 2 x d x = D x 2 sin 1 2 x
92 eqid x 2 sin 1 2 x = x 2 sin 1 2 x
93 2cnd x 2
94 halfcn 1 2
95 94 a1i x 1 2
96 id x x
97 95 96 mulcld x 1 2 x
98 97 sincld x sin 1 2 x
99 93 98 mulcld x 2 sin 1 2 x
100 92 99 fmpti x 2 sin 1 2 x :
101 eqid x 2 1 2 cos 1 2 x = x 2 1 2 cos 1 2 x
102 2cn 2
103 102 94 mulcli 2 1 2
104 103 a1i x 2 1 2
105 97 coscld x cos 1 2 x
106 104 105 mulcld x 2 1 2 cos 1 2 x
107 106 adantl x 2 1 2 cos 1 2 x
108 101 107 dmmptd dom x 2 1 2 cos 1 2 x =
109 108 mptru dom x 2 1 2 cos 1 2 x =
110 12 109 sseqtrri dom x 2 1 2 cos 1 2 x
111 dvasinbx 2 1 2 dx 2 sin 1 2 x d x = x 2 1 2 cos 1 2 x
112 102 94 111 mp2an dx 2 sin 1 2 x d x = x 2 1 2 cos 1 2 x
113 112 dmeqi dom dx 2 sin 1 2 x d x = dom x 2 1 2 cos 1 2 x
114 110 113 sseqtrri dom dx 2 sin 1 2 x d x
115 dvcnre x 2 sin 1 2 x : dom dx 2 sin 1 2 x d x D x 2 sin 1 2 x = dx 2 sin 1 2 x d x
116 100 114 115 mp2an D x 2 sin 1 2 x = dx 2 sin 1 2 x d x
117 112 reseq1i dx 2 sin 1 2 x d x = x 2 1 2 cos 1 2 x
118 resmpt x 2 1 2 cos 1 2 x = x 2 1 2 cos 1 2 x
119 12 118 ax-mp x 2 1 2 cos 1 2 x = x 2 1 2 cos 1 2 x
120 102 81 recidi 2 1 2 = 1
121 120 a1i x 2 1 2 = 1
122 83 eqcomd x 1 2 x = x 2
123 122 fveq2d x cos 1 2 x = cos x 2
124 121 123 oveq12d x 2 1 2 cos 1 2 x = 1 cos x 2
125 52 halfcld x x 2
126 125 coscld x cos x 2
127 126 mulid2d x 1 cos x 2 = cos x 2
128 124 127 eqtrd x 2 1 2 cos 1 2 x = cos x 2
129 128 mpteq2ia x 2 1 2 cos 1 2 x = x cos x 2
130 117 119 129 3eqtri dx 2 sin 1 2 x d x = x cos x 2
131 91 116 130 3eqtri dx 2 sin 1 2 x d x = x cos x 2
132 87 131 eqtri dx 2 sin x 2 d x = x cos x 2
133 132 a1i dx 2 sin x 2 d x = x cos x 2
134 51 78 79 133 20 57 56 64 dvmptres dx π π 0 2 sin x 2 d x = x π π 0 cos x 2
135 134 mptru dx π π 0 2 sin x 2 d x = x π π 0 cos x 2
136 135 eqcomi x π π 0 cos x 2 = dx π π 0 2 sin x 2 d x
137 136 dmeqi dom x π π 0 cos x 2 = dom dx π π 0 2 sin x 2 d x
138 74 137 eqtr3i π π 0 = dom dx π π 0 2 sin x 2 d x
139 138 eqimssi π π 0 dom dx π π 0 2 sin x 2 d x
140 139 a1i π π 0 dom dx π π 0 2 sin x 2 d x
141 17 recnd s π π s
142 141 ssriv π π
143 142 a1i π π
144 ssid
145 144 a1i
146 143 145 idcncfg x π π x : π π cn
147 146 mptru x π π x : π π cn
148 cnlimc π π x π π x : π π cn x π π x : π π y π π x π π x y x π π x lim y
149 142 148 ax-mp x π π x : π π cn x π π x : π π y π π x π π x y x π π x lim y
150 147 149 mpbi x π π x : π π y π π x π π x y x π π x lim y
151 150 simpri y π π x π π x y x π π x lim y
152 fveq2 y = 0 x π π x y = x π π x 0
153 oveq2 y = 0 x π π x lim y = x π π x lim 0
154 152 153 eleq12d y = 0 x π π x y x π π x lim y x π π x 0 x π π x lim 0
155 154 rspccva y π π x π π x y x π π x lim y 0 π π x π π x 0 x π π x lim 0
156 151 44 155 mp2an x π π x 0 x π π x lim 0
157 id x = 0 x = 0
158 eqid x π π x = x π π x
159 c0ex 0 V
160 157 158 159 fvmpt 0 π π x π π x 0 = 0
161 44 160 ax-mp x π π x 0 = 0
162 elioore x π π x
163 162 recnd x π π x
164 158 163 fmpti x π π x : π π
165 164 a1i x π π x : π π
166 165 limcdif x π π x lim 0 = x π π x π π 0 lim 0
167 166 mptru x π π x lim 0 = x π π x π π 0 lim 0
168 resmpt π π 0 π π x π π x π π 0 = x π π 0 x
169 16 168 ax-mp x π π x π π 0 = x π π 0 x
170 169 oveq1i x π π x π π 0 lim 0 = x π π 0 x lim 0
171 167 170 eqtri x π π x lim 0 = x π π 0 x lim 0
172 156 161 171 3eltr3i 0 x π π 0 x lim 0
173 172 a1i 0 x π π 0 x lim 0
174 eqid x 2 = x 2
175 144 a1i 2
176 2cnd 2 2
177 175 176 175 constcncfg 2 x 2 : cn
178 102 177 mp1i x 2 : cn
179 2cnd x π π 2
180 174 178 143 145 179 cncfmptssg x π π 2 : π π cn
181 sincn sin : cn
182 181 a1i sin : cn
183 eqid x x 2 = x x 2
184 183 divccncf 2 2 0 x x 2 : cn
185 102 81 184 mp2an x x 2 : cn
186 185 a1i x x 2 : cn
187 163 adantl x π π x
188 187 halfcld x π π x 2
189 183 186 143 145 188 cncfmptssg x π π x 2 : π π cn
190 182 189 cncfmpt1f x π π sin x 2 : π π cn
191 180 190 mulcncf x π π 2 sin x 2 : π π cn
192 191 mptru x π π 2 sin x 2 : π π cn
193 cnlimc π π x π π 2 sin x 2 : π π cn x π π 2 sin x 2 : π π y π π x π π 2 sin x 2 y x π π 2 sin x 2 lim y
194 142 193 ax-mp x π π 2 sin x 2 : π π cn x π π 2 sin x 2 : π π y π π x π π 2 sin x 2 y x π π 2 sin x 2 lim y
195 192 194 mpbi x π π 2 sin x 2 : π π y π π x π π 2 sin x 2 y x π π 2 sin x 2 lim y
196 195 simpri y π π x π π 2 sin x 2 y x π π 2 sin x 2 lim y
197 fveq2 y = 0 x π π 2 sin x 2 y = x π π 2 sin x 2 0
198 oveq2 y = 0 x π π 2 sin x 2 lim y = x π π 2 sin x 2 lim 0
199 197 198 eleq12d y = 0 x π π 2 sin x 2 y x π π 2 sin x 2 lim y x π π 2 sin x 2 0 x π π 2 sin x 2 lim 0
200 199 rspccva y π π x π π 2 sin x 2 y x π π 2 sin x 2 lim y 0 π π x π π 2 sin x 2 0 x π π 2 sin x 2 lim 0
201 196 44 200 mp2an x π π 2 sin x 2 0 x π π 2 sin x 2 lim 0
202 oveq1 x = 0 x 2 = 0 2
203 102 81 div0i 0 2 = 0
204 202 203 eqtrdi x = 0 x 2 = 0
205 204 fveq2d x = 0 sin x 2 = sin 0
206 sin0 sin 0 = 0
207 205 206 eqtrdi x = 0 sin x 2 = 0
208 207 oveq2d x = 0 2 sin x 2 = 2 0
209 2t0e0 2 0 = 0
210 208 209 eqtrdi x = 0 2 sin x 2 = 0
211 eqid x π π 2 sin x 2 = x π π 2 sin x 2
212 210 211 159 fvmpt 0 π π x π π 2 sin x 2 0 = 0
213 44 212 ax-mp x π π 2 sin x 2 0 = 0
214 2cnd x π π 2
215 163 halfcld x π π x 2
216 215 sincld x π π sin x 2
217 214 216 mulcld x π π 2 sin x 2
218 211 217 fmpti x π π 2 sin x 2 : π π
219 218 a1i x π π 2 sin x 2 : π π
220 219 limcdif x π π 2 sin x 2 lim 0 = x π π 2 sin x 2 π π 0 lim 0
221 220 mptru x π π 2 sin x 2 lim 0 = x π π 2 sin x 2 π π 0 lim 0
222 resmpt π π 0 π π x π π 2 sin x 2 π π 0 = x π π 0 2 sin x 2
223 16 222 ax-mp x π π 2 sin x 2 π π 0 = x π π 0 2 sin x 2
224 223 oveq1i x π π 2 sin x 2 π π 0 lim 0 = x π π 0 2 sin x 2 lim 0
225 221 224 eqtri x π π 2 sin x 2 lim 0 = x π π 0 2 sin x 2 lim 0
226 201 213 225 3eltr3i 0 x π π 0 2 sin x 2 lim 0
227 226 a1i 0 x π π 0 2 sin x 2 lim 0
228 eqidd y π π 0 x π π 0 2 sin x 2 = x π π 0 2 sin x 2
229 oveq1 x = y x 2 = y 2
230 229 fveq2d x = y sin x 2 = sin y 2
231 230 oveq2d x = y 2 sin x 2 = 2 sin y 2
232 231 adantl y π π 0 x = y 2 sin x 2 = 2 sin y 2
233 id y π π 0 y π π 0
234 26 a1i y π π 0 2
235 19 sseli y π π 0 y
236 235 rehalfcld y π π 0 y 2
237 236 resincld y π π 0 sin y 2
238 234 237 remulcld y π π 0 2 sin y 2
239 228 232 233 238 fvmptd y π π 0 x π π 0 2 sin x 2 y = 2 sin y 2
240 2cnd y π π 0 2
241 237 recnd y π π 0 sin y 2
242 81 a1i y π π 0 2 0
243 ioossicc π π π π
244 eldifi y π π 0 y π π
245 243 244 sselid y π π 0 y π π
246 eldifsni y π π 0 y 0
247 fourierdlem44 y π π y 0 sin y 2 0
248 245 246 247 syl2anc y π π 0 sin y 2 0
249 240 241 242 248 mulne0d y π π 0 2 sin y 2 0
250 239 249 eqnetrd y π π 0 x π π 0 2 sin x 2 y 0
251 250 neneqd y π π 0 ¬ x π π 0 2 sin x 2 y = 0
252 251 nrex ¬ y π π 0 x π π 0 2 sin x 2 y = 0
253 25 fnmpt x π π 0 2 sin x 2 x π π 0 2 sin x 2 Fn π π 0
254 253 30 mprg x π π 0 2 sin x 2 Fn π π 0
255 ssid π π 0 π π 0
256 fvelimab x π π 0 2 sin x 2 Fn π π 0 π π 0 π π 0 0 x π π 0 2 sin x 2 π π 0 y π π 0 x π π 0 2 sin x 2 y = 0
257 254 255 256 mp2an 0 x π π 0 2 sin x 2 π π 0 y π π 0 x π π 0 2 sin x 2 y = 0
258 252 257 mtbir ¬ 0 x π π 0 2 sin x 2 π π 0
259 258 a1i ¬ 0 x π π 0 2 sin x 2 π π 0
260 eqidd y π π 0 x π π 0 cos x 2 = x π π 0 cos x 2
261 229 fveq2d x = y cos x 2 = cos y 2
262 261 adantl y π π 0 x = y cos x 2 = cos y 2
263 235 recnd y π π 0 y
264 263 halfcld y π π 0 y 2
265 264 coscld y π π 0 cos y 2
266 260 262 233 265 fvmptd y π π 0 x π π 0 cos x 2 y = cos y 2
267 236 rered y π π 0 y 2 = y 2
268 halfpire π 2
269 268 renegcli π 2
270 269 a1i y π π 0 π 2
271 270 rexrd y π π 0 π 2 *
272 268 a1i y π π 0 π 2
273 272 rexrd y π π 0 π 2 *
274 picn π
275 divneg π 2 2 0 π 2 = π 2
276 274 102 81 275 mp3an π 2 = π 2
277 39 a1i y π π 0 π
278 2rp 2 +
279 278 a1i y π π 0 2 +
280 40 a1i y π π 0 π *
281 41 a1i y π π 0 π *
282 ioogtlb π * π * y π π π < y
283 280 281 244 282 syl3anc y π π 0 π < y
284 277 235 279 283 ltdiv1dd y π π 0 π 2 < y 2
285 276 284 eqbrtrid y π π 0 π 2 < y 2
286 38 a1i y π π 0 π
287 iooltub π * π * y π π y < π
288 280 281 244 287 syl3anc y π π 0 y < π
289 235 286 279 288 ltdiv1dd y π π 0 y 2 < π 2
290 271 273 236 285 289 eliood y π π 0 y 2 π 2 π 2
291 267 290 eqeltrd y π π 0 y 2 π 2 π 2
292 cosne0 y 2 y 2 π 2 π 2 cos y 2 0
293 264 291 292 syl2anc y π π 0 cos y 2 0
294 266 293 eqnetrd y π π 0 x π π 0 cos x 2 y 0
295 294 neneqd y π π 0 ¬ x π π 0 cos x 2 y = 0
296 295 nrex ¬ y π π 0 x π π 0 cos x 2 y = 0
297 72 73 fnmpti x π π 0 cos x 2 Fn π π 0
298 fvelimab x π π 0 cos x 2 Fn π π 0 π π 0 π π 0 0 x π π 0 cos x 2 π π 0 y π π 0 x π π 0 cos x 2 y = 0
299 297 255 298 mp2an 0 x π π 0 cos x 2 π π 0 y π π 0 x π π 0 cos x 2 y = 0
300 296 299 mtbir ¬ 0 x π π 0 cos x 2 π π 0
301 135 imaeq1i dx π π 0 2 sin x 2 d x π π 0 = x π π 0 cos x 2 π π 0
302 301 eleq2i 0 dx π π 0 2 sin x 2 d x π π 0 0 x π π 0 cos x 2 π π 0
303 300 302 mtbir ¬ 0 dx π π 0 2 sin x 2 d x π π 0
304 303 a1i ¬ 0 dx π π 0 2 sin x 2 d x π π 0
305 eqid s π π 0 cos s 2 = s π π 0 cos s 2
306 eqid s π π 0 1 cos s 2 = s π π 0 1 cos s 2
307 19 sseli s π π 0 s
308 307 recnd s π π 0 s
309 308 halfcld s π π 0 s 2
310 309 coscld s π π 0 cos s 2
311 307 rehalfcld s π π 0 s 2
312 311 rered s π π 0 s 2 = s 2
313 269 a1i s π π 0 π 2
314 313 rexrd s π π 0 π 2 *
315 268 a1i s π π 0 π 2
316 315 rexrd s π π 0 π 2 *
317 38 a1i s π π 0 π
318 317 renegcld s π π 0 π
319 278 a1i s π π 0 2 +
320 40 a1i s π π 0 π *
321 41 a1i s π π 0 π *
322 eldifi s π π 0 s π π
323 ioogtlb π * π * s π π π < s
324 320 321 322 323 syl3anc s π π 0 π < s
325 318 307 319 324 ltdiv1dd s π π 0 π 2 < s 2
326 276 325 eqbrtrid s π π 0 π 2 < s 2
327 iooltub π * π * s π π s < π
328 320 321 322 327 syl3anc s π π 0 s < π
329 307 317 319 328 ltdiv1dd s π π 0 s 2 < π 2
330 314 316 311 326 329 eliood s π π 0 s 2 π 2 π 2
331 312 330 eqeltrd s π π 0 s 2 π 2 π 2
332 cosne0 s 2 s 2 π 2 π 2 cos s 2 0
333 309 331 332 syl2anc s π π 0 cos s 2 0
334 333 neneqd s π π 0 ¬ cos s 2 = 0
335 311 recoscld s π π 0 cos s 2
336 elsng cos s 2 cos s 2 0 cos s 2 = 0
337 335 336 syl s π π 0 cos s 2 0 cos s 2 = 0
338 334 337 mtbird s π π 0 ¬ cos s 2 0
339 310 338 eldifd s π π 0 cos s 2 0
340 339 adantl s π π 0 cos s 2 0
341 309 ad2antrl s π π 0 s 2 0 s 2
342 cosf cos :
343 342 a1i cos :
344 343 ffvelrnda x cos x
345 eqid s s 2 = s s 2
346 345 divccncf 2 2 0 s s 2 : cn
347 102 81 346 mp2an s s 2 : cn
348 347 a1i s s 2 : cn
349 141 adantl s π π s
350 349 halfcld s π π s 2
351 345 348 143 145 350 cncfmptssg s π π s 2 : π π cn
352 oveq1 s = 0 s 2 = 0 2
353 352 203 eqtrdi s = 0 s 2 = 0
354 351 45 353 cnmptlimc 0 s π π s 2 lim 0
355 eqid s π π s 2 = s π π s 2
356 141 halfcld s π π s 2
357 355 356 fmpti s π π s 2 : π π
358 357 a1i s π π s 2 : π π
359 358 limcdif s π π s 2 lim 0 = s π π s 2 π π 0 lim 0
360 359 mptru s π π s 2 lim 0 = s π π s 2 π π 0 lim 0
361 resmpt π π 0 π π s π π s 2 π π 0 = s π π 0 s 2
362 16 361 ax-mp s π π s 2 π π 0 = s π π 0 s 2
363 362 oveq1i s π π s 2 π π 0 lim 0 = s π π 0 s 2 lim 0
364 360 363 eqtri s π π s 2 lim 0 = s π π 0 s 2 lim 0
365 354 364 eleqtrdi 0 s π π 0 s 2 lim 0
366 ffn cos : cos Fn
367 342 366 ax-mp cos Fn
368 dffn5 cos Fn cos = x cos x
369 367 368 mpbi cos = x cos x
370 coscn cos : cn
371 369 370 eqeltrri x cos x : cn
372 371 a1i x cos x : cn
373 0cnd 0
374 fveq2 x = 0 cos x = cos 0
375 cos0 cos 0 = 1
376 374 375 eqtrdi x = 0 cos x = 1
377 372 373 376 cnmptlimc 1 x cos x lim 0
378 fveq2 x = s 2 cos x = cos s 2
379 fveq2 s 2 = 0 cos s 2 = cos 0
380 379 375 eqtrdi s 2 = 0 cos s 2 = 1
381 380 ad2antll s π π 0 s 2 = 0 cos s 2 = 1
382 341 344 365 377 378 381 limcco 1 s π π 0 cos s 2 lim 0
383 ax-1ne0 1 0
384 383 a1i 1 0
385 305 306 340 382 384 reclimc 1 1 s π π 0 1 cos s 2 lim 0
386 1div1e1 1 1 = 1
387 66 fveq1i dx π π 0 x d x s = x π π 0 1 s
388 eqidd s π π 0 x π π 0 1 = x π π 0 1
389 eqidd s π π 0 x = s 1 = 1
390 id s π π 0 s π π 0
391 1red s π π 0 1
392 388 389 390 391 fvmptd s π π 0 x π π 0 1 s = 1
393 387 392 eqtr2id s π π 0 1 = dx π π 0 x d x s
394 135 a1i s π π 0 dx π π 0 2 sin x 2 d x = x π π 0 cos x 2
395 oveq1 x = s x 2 = s 2
396 395 fveq2d x = s cos x 2 = cos s 2
397 396 adantl s π π 0 x = s cos x 2 = cos s 2
398 394 397 390 335 fvmptd s π π 0 dx π π 0 2 sin x 2 d x s = cos s 2
399 398 eqcomd s π π 0 cos s 2 = dx π π 0 2 sin x 2 d x s
400 393 399 oveq12d s π π 0 1 cos s 2 = dx π π 0 x d x s dx π π 0 2 sin x 2 d x s
401 400 mpteq2ia s π π 0 1 cos s 2 = s π π 0 dx π π 0 x d x s dx π π 0 2 sin x 2 d x s
402 401 oveq1i s π π 0 1 cos s 2 lim 0 = s π π 0 dx π π 0 x d x s dx π π 0 2 sin x 2 d x s lim 0
403 385 386 402 3eltr3g 1 s π π 0 dx π π 0 x d x s dx π π 0 2 sin x 2 d x s lim 0
404 20 24 32 34 45 46 71 140 173 227 259 304 403 lhop 1 s π π 0 x π π 0 x s x π π 0 2 sin x 2 s lim 0
405 404 mptru 1 s π π 0 x π π 0 x s x π π 0 2 sin x 2 s lim 0
406 eqidd s π π 0 x π π 0 x = x π π 0 x
407 simpr s π π 0 x = s x = s
408 406 407 390 307 fvmptd s π π 0 x π π 0 x s = s
409 eqidd s π π 0 x π π 0 2 sin x 2 = x π π 0 2 sin x 2
410 407 oveq1d s π π 0 x = s x 2 = s 2
411 410 fveq2d s π π 0 x = s sin x 2 = sin s 2
412 411 oveq2d s π π 0 x = s 2 sin x 2 = 2 sin s 2
413 26 a1i s π π 0 2
414 311 resincld s π π 0 sin s 2
415 413 414 remulcld s π π 0 2 sin s 2
416 409 412 390 415 fvmptd s π π 0 x π π 0 2 sin x 2 s = 2 sin s 2
417 408 416 oveq12d s π π 0 x π π 0 x s x π π 0 2 sin x 2 s = s 2 sin s 2
418 417 mpteq2ia s π π 0 x π π 0 x s x π π 0 2 sin x 2 s = s π π 0 s 2 sin s 2
419 418 oveq1i s π π 0 x π π 0 x s x π π 0 2 sin x 2 s lim 0 = s π π 0 s 2 sin s 2 lim 0
420 405 419 eleqtri 1 s π π 0 s 2 sin s 2 lim 0
421 10 oveq1i K lim 0 = s π π if s = 0 1 s 2 sin s 2 lim 0
422 10 feq1i K : π π s π π if s = 0 1 s 2 sin s 2 : π π
423 14 422 mpbi s π π if s = 0 1 s 2 sin s 2 : π π
424 423 a1i s π π if s = 0 1 s 2 sin s 2 : π π
425 243 a1i π π π π
426 iccssre π π π π
427 39 38 426 mp2an π π
428 427 a1i π π
429 428 12 sstrdi π π
430 eqid TopOpen fld 𝑡 π π 0 = TopOpen fld 𝑡 π π 0
431 39 35 36 ltleii π 0
432 35 38 37 ltleii 0 π
433 39 38 elicc2i 0 π π 0 π 0 0 π
434 35 431 432 433 mpbir3an 0 π π
435 159 snss 0 π π 0 π π
436 434 435 mpbi 0 π π
437 ssequn2 0 π π π π 0 = π π
438 436 437 mpbi π π 0 = π π
439 438 oveq2i TopOpen fld 𝑡 π π 0 = TopOpen fld 𝑡 π π
440 eqid topGen ran . = topGen ran .
441 56 440 rerest π π TopOpen fld 𝑡 π π = topGen ran . 𝑡 π π
442 427 441 ax-mp TopOpen fld 𝑡 π π = topGen ran . 𝑡 π π
443 439 442 eqtri TopOpen fld 𝑡 π π 0 = topGen ran . 𝑡 π π
444 443 fveq2i int TopOpen fld 𝑡 π π 0 = int topGen ran . 𝑡 π π
445 159 snss 0 π π 0 π π
446 44 445 mpbi 0 π π
447 ssequn2 0 π π π π 0 = π π
448 446 447 mpbi π π 0 = π π
449 444 448 fveq12i int TopOpen fld 𝑡 π π 0 π π 0 = int topGen ran . 𝑡 π π π π
450 resttopon topGen ran . TopOn π π topGen ran . 𝑡 π π TopOn π π
451 60 427 450 mp2an topGen ran . 𝑡 π π TopOn π π
452 451 topontopi topGen ran . 𝑡 π π Top
453 retop topGen ran . Top
454 ovex π π V
455 453 454 pm3.2i topGen ran . Top π π V
456 ssid π π π π
457 33 243 456 3pm3.2i π π topGen ran . π π π π π π π π
458 restopnb topGen ran . Top π π V π π topGen ran . π π π π π π π π π π topGen ran . π π topGen ran . 𝑡 π π
459 455 457 458 mp2an π π topGen ran . π π topGen ran . 𝑡 π π
460 33 459 mpbi π π topGen ran . 𝑡 π π
461 isopn3i topGen ran . 𝑡 π π Top π π topGen ran . 𝑡 π π int topGen ran . 𝑡 π π π π = π π
462 452 460 461 mp2an int topGen ran . 𝑡 π π π π = π π
463 eqid π π = π π
464 449 462 463 3eqtrri π π = int TopOpen fld 𝑡 π π 0 π π 0
465 44 464 eleqtri 0 int TopOpen fld 𝑡 π π 0 π π 0
466 465 a1i 0 int TopOpen fld 𝑡 π π 0 π π 0
467 424 425 429 56 430 466 limcres s π π if s = 0 1 s 2 sin s 2 π π lim 0 = s π π if s = 0 1 s 2 sin s 2 lim 0
468 467 mptru s π π if s = 0 1 s 2 sin s 2 π π lim 0 = s π π if s = 0 1 s 2 sin s 2 lim 0
469 468 eqcomi s π π if s = 0 1 s 2 sin s 2 lim 0 = s π π if s = 0 1 s 2 sin s 2 π π lim 0
470 resmpt π π π π s π π if s = 0 1 s 2 sin s 2 π π = s π π if s = 0 1 s 2 sin s 2
471 243 470 ax-mp s π π if s = 0 1 s 2 sin s 2 π π = s π π if s = 0 1 s 2 sin s 2
472 471 oveq1i s π π if s = 0 1 s 2 sin s 2 π π lim 0 = s π π if s = 0 1 s 2 sin s 2 lim 0
473 421 469 472 3eqtri K lim 0 = s π π if s = 0 1 s 2 sin s 2 lim 0
474 eqid s π π if s = 0 1 s 2 sin s 2 = s π π if s = 0 1 s 2 sin s 2
475 iftrue s = 0 if s = 0 1 s 2 sin s 2 = 1
476 1cnd s = 0 1
477 475 476 eqeltrd s = 0 if s = 0 1 s 2 sin s 2
478 477 adantl s π π s = 0 if s = 0 1 s 2 sin s 2
479 iffalse ¬ s = 0 if s = 0 1 s 2 sin s 2 = s 2 sin s 2
480 479 adantl s π π ¬ s = 0 if s = 0 1 s 2 sin s 2 = s 2 sin s 2
481 141 adantr s π π ¬ s = 0 s
482 2cnd s π π ¬ s = 0 2
483 481 halfcld s π π ¬ s = 0 s 2
484 483 sincld s π π ¬ s = 0 sin s 2
485 482 484 mulcld s π π ¬ s = 0 2 sin s 2
486 81 a1i s π π ¬ s = 0 2 0
487 243 sseli s π π s π π
488 neqne ¬ s = 0 s 0
489 fourierdlem44 s π π s 0 sin s 2 0
490 487 488 489 syl2an s π π ¬ s = 0 sin s 2 0
491 482 484 486 490 mulne0d s π π ¬ s = 0 2 sin s 2 0
492 481 485 491 divcld s π π ¬ s = 0 s 2 sin s 2
493 480 492 eqeltrd s π π ¬ s = 0 if s = 0 1 s 2 sin s 2
494 478 493 pm2.61dan s π π if s = 0 1 s 2 sin s 2
495 474 494 fmpti s π π if s = 0 1 s 2 sin s 2 : π π
496 495 a1i s π π if s = 0 1 s 2 sin s 2 : π π
497 496 limcdif s π π if s = 0 1 s 2 sin s 2 lim 0 = s π π if s = 0 1 s 2 sin s 2 π π 0 lim 0
498 497 mptru s π π if s = 0 1 s 2 sin s 2 lim 0 = s π π if s = 0 1 s 2 sin s 2 π π 0 lim 0
499 resmpt π π 0 π π s π π if s = 0 1 s 2 sin s 2 π π 0 = s π π 0 if s = 0 1 s 2 sin s 2
500 16 499 ax-mp s π π if s = 0 1 s 2 sin s 2 π π 0 = s π π 0 if s = 0 1 s 2 sin s 2
501 eldifn s π π 0 ¬ s 0
502 velsn s 0 s = 0
503 501 502 sylnib s π π 0 ¬ s = 0
504 503 479 syl s π π 0 if s = 0 1 s 2 sin s 2 = s 2 sin s 2
505 504 mpteq2ia s π π 0 if s = 0 1 s 2 sin s 2 = s π π 0 s 2 sin s 2
506 500 505 eqtri s π π if s = 0 1 s 2 sin s 2 π π 0 = s π π 0 s 2 sin s 2
507 506 oveq1i s π π if s = 0 1 s 2 sin s 2 π π 0 lim 0 = s π π 0 s 2 sin s 2 lim 0
508 473 498 507 3eqtrri s π π 0 s 2 sin s 2 lim 0 = K lim 0
509 420 508 eleqtri 1 K lim 0
510 509 a1i s = 0 1 K lim 0
511 fveq2 s = 0 K s = K 0
512 475 10 47 fvmpt 0 π π K 0 = 1
513 434 512 ax-mp K 0 = 1
514 511 513 eqtrdi s = 0 K s = 1
515 oveq2 s = 0 K lim s = K lim 0
516 510 514 515 3eltr4d s = 0 K s K lim s
517 427 12 sstri π π
518 517 a1i s = 0 π π
519 38 a1i s = 0 π
520 519 renegcld s = 0 π
521 id s = 0 s = 0
522 35 a1i s = 0 0
523 521 522 eqeltrd s = 0 s
524 431 521 breqtrrid s = 0 π s
525 521 432 eqbrtrdi s = 0 s π
526 520 519 523 524 525 eliccd s = 0 s π π
527 57 oveq1i topGen ran . 𝑡 π π = TopOpen fld 𝑡 𝑡 π π
528 56 cnfldtop TopOpen fld Top
529 reex V
530 restabs TopOpen fld Top π π V TopOpen fld 𝑡 𝑡 π π = TopOpen fld 𝑡 π π
531 528 427 529 530 mp3an TopOpen fld 𝑡 𝑡 π π = TopOpen fld 𝑡 π π
532 527 531 eqtri topGen ran . 𝑡 π π = TopOpen fld 𝑡 π π
533 56 532 cnplimc π π s π π K topGen ran . 𝑡 π π CnP TopOpen fld s K : π π K s K lim s
534 518 526 533 syl2anc s = 0 K topGen ran . 𝑡 π π CnP TopOpen fld s K : π π K s K lim s
535 15 516 534 mpbir2and s = 0 K topGen ran . 𝑡 π π CnP TopOpen fld s
536 535 adantl s π π s = 0 K topGen ran . 𝑡 π π CnP TopOpen fld s
537 simpl s π π ¬ s = 0 s π π
538 502 notbii ¬ s 0 ¬ s = 0
539 538 biimpri ¬ s = 0 ¬ s 0
540 539 adantl s π π ¬ s = 0 ¬ s 0
541 537 540 eldifd s π π ¬ s = 0 s π π 0
542 fveq2 x = s topGen ran . 𝑡 π π 0 CnP TopOpen fld x = topGen ran . 𝑡 π π 0 CnP TopOpen fld s
543 542 eleq2d x = s s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld x s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld s
544 429 ssdifssd π π 0
545 544 145 idcncfg s π π 0 s : π π 0 cn
546 eqid s π π 0 2 sin s 2 = s π π 0 2 sin s 2
547 2cnd s π π 0 2
548 eldifi s π π 0 s π π
549 517 548 sselid s π π 0 s
550 549 halfcld s π π 0 s 2
551 550 sincld s π π 0 sin s 2
552 547 551 mulcld s π π 0 2 sin s 2
553 81 a1i s π π 0 2 0
554 eldifsni s π π 0 s 0
555 548 554 489 syl2anc s π π 0 sin s 2 0
556 547 551 553 555 mulne0d s π π 0 2 sin s 2 0
557 556 neneqd s π π 0 ¬ 2 sin s 2 = 0
558 elsng 2 sin s 2 2 sin s 2 0 2 sin s 2 = 0
559 552 558 syl s π π 0 2 sin s 2 0 2 sin s 2 = 0
560 557 559 mtbird s π π 0 ¬ 2 sin s 2 0
561 552 560 eldifd s π π 0 2 sin s 2 0
562 546 561 fmpti s π π 0 2 sin s 2 : π π 0 0
563 difss 0
564 eqid s 2 = s 2
565 175 176 175 constcncfg 2 s 2 : cn
566 102 565 mp1i s 2 : cn
567 2cnd s π π 0 2
568 564 566 544 145 567 cncfmptssg s π π 0 2 : π π 0 cn
569 549 547 553 divrecd s π π 0 s 2 = s 1 2
570 569 mpteq2ia s π π 0 s 2 = s π π 0 s 1 2
571 eqid s 1 2 = s 1 2
572 144 a1i 1 2
573 id 1 2 1 2
574 572 573 572 constcncfg 1 2 s 1 2 : cn
575 94 574 mp1i s 1 2 : cn
576 94 a1i s π π 0 1 2
577 571 575 544 145 576 cncfmptssg s π π 0 1 2 : π π 0 cn
578 545 577 mulcncf s π π 0 s 1 2 : π π 0 cn
579 570 578 eqeltrid s π π 0 s 2 : π π 0 cn
580 182 579 cncfmpt1f s π π 0 sin s 2 : π π 0 cn
581 568 580 mulcncf s π π 0 2 sin s 2 : π π 0 cn
582 581 mptru s π π 0 2 sin s 2 : π π 0 cn
583 cncffvrn 0 s π π 0 2 sin s 2 : π π 0 cn s π π 0 2 sin s 2 : π π 0 cn 0 s π π 0 2 sin s 2 : π π 0 0
584 563 582 583 mp2an s π π 0 2 sin s 2 : π π 0 cn 0 s π π 0 2 sin s 2 : π π 0 0
585 562 584 mpbir s π π 0 2 sin s 2 : π π 0 cn 0
586 585 a1i s π π 0 2 sin s 2 : π π 0 cn 0
587 545 586 divcncf s π π 0 s 2 sin s 2 : π π 0 cn
588 587 mptru s π π 0 s 2 sin s 2 : π π 0 cn
589 428 ssdifssd π π 0
590 589 mptru π π 0
591 590 12 sstri π π 0
592 57 oveq1i topGen ran . 𝑡 π π 0 = TopOpen fld 𝑡 𝑡 π π 0
593 restabs TopOpen fld Top π π 0 V TopOpen fld 𝑡 𝑡 π π 0 = TopOpen fld 𝑡 π π 0
594 528 590 529 593 mp3an TopOpen fld 𝑡 𝑡 π π 0 = TopOpen fld 𝑡 π π 0
595 592 594 eqtri topGen ran . 𝑡 π π 0 = TopOpen fld 𝑡 π π 0
596 unicntop = TopOpen fld
597 596 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
598 528 597 ax-mp TopOpen fld 𝑡 = TopOpen fld
599 598 eqcomi TopOpen fld = TopOpen fld 𝑡
600 56 595 599 cncfcn π π 0 π π 0 cn = topGen ran . 𝑡 π π 0 Cn TopOpen fld
601 591 144 600 mp2an π π 0 cn = topGen ran . 𝑡 π π 0 Cn TopOpen fld
602 588 601 eleqtri s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 Cn TopOpen fld
603 resttopon topGen ran . TopOn π π 0 topGen ran . 𝑡 π π 0 TopOn π π 0
604 60 590 603 mp2an topGen ran . 𝑡 π π 0 TopOn π π 0
605 56 cnfldtopon TopOpen fld TopOn
606 cncnp topGen ran . 𝑡 π π 0 TopOn π π 0 TopOpen fld TopOn s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 Cn TopOpen fld s π π 0 s 2 sin s 2 : π π 0 x π π 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld x
607 604 605 606 mp2an s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 Cn TopOpen fld s π π 0 s 2 sin s 2 : π π 0 x π π 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld x
608 602 607 mpbi s π π 0 s 2 sin s 2 : π π 0 x π π 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld x
609 608 simpri x π π 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld x
610 543 609 vtoclri s π π 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld s
611 541 610 syl s π π ¬ s = 0 s π π 0 s 2 sin s 2 topGen ran . 𝑡 π π 0 CnP TopOpen fld s
612 10 reseq1i K π π 0 = s π π if s = 0 1 s 2 sin s 2 π π 0
613 difss π π 0 π π
614 resmpt π π 0 π π s π π if s = 0 1 s 2 sin s 2 π π 0 = s π π 0 if s = 0 1 s 2 sin s 2
615 613 614 ax-mp s π π if s = 0 1 s 2 sin s 2 π π 0 = s π π 0 if s = 0 1 s 2 sin s 2
616 eldifn s π π 0 ¬ s 0
617 616 502 sylnib s π π 0 ¬ s = 0
618 617 479 syl s π π 0 if s = 0 1 s 2 sin s 2 = s 2 sin s 2
619 618 mpteq2ia s π π 0 if s = 0 1 s 2 sin s 2 = s π π 0 s 2 sin s 2
620 612 615 619 3eqtri K π π 0 = s π π 0 s 2 sin s 2
621 restabs topGen ran . Top π π 0 π π π π V topGen ran . 𝑡 π π 𝑡 π π 0 = topGen ran . 𝑡 π π 0
622 453 613 454 621 mp3an topGen ran . 𝑡 π π 𝑡 π π 0 = topGen ran . 𝑡 π π 0
623 622 oveq1i topGen ran . 𝑡 π π 𝑡 π π 0 CnP TopOpen fld = topGen ran . 𝑡 π π 0 CnP TopOpen fld
624 623 fveq1i topGen ran . 𝑡 π π 𝑡 π π 0 CnP TopOpen fld s = topGen ran . 𝑡 π π 0 CnP TopOpen fld s
625 611 620 624 3eltr4g s π π ¬ s = 0 K π π 0 topGen ran . 𝑡 π π 𝑡 π π 0 CnP TopOpen fld s
626 452 613 pm3.2i topGen ran . 𝑡 π π Top π π 0 π π
627 626 a1i s π π ¬ s = 0 topGen ran . 𝑡 π π Top π π 0 π π
628 ssdif π π π π 0 0
629 427 628 ax-mp π π 0 0
630 629 541 sselid s π π ¬ s = 0 s 0
631 sscon 0 π π π π 0
632 436 631 ax-mp π π 0
633 629 632 unssi π π 0 π π 0
634 simpr s 0 s π π s π π
635 eldifn s 0 ¬ s 0
636 635 adantr s 0 s π π ¬ s 0
637 634 636 eldifd s 0 s π π s π π 0
638 elun1 s π π 0 s π π 0 π π
639 637 638 syl s 0 s π π s π π 0 π π
640 eldifi s 0 s
641 640 adantr s 0 ¬ s π π s
642 simpr s 0 ¬ s π π ¬ s π π
643 641 642 eldifd s 0 ¬ s π π s π π
644 elun2 s π π s π π 0 π π
645 643 644 syl s 0 ¬ s π π s π π 0 π π
646 639 645 pm2.61dan s 0 s π π 0 π π
647 646 ssriv 0 π π 0 π π
648 633 647 eqssi π π 0 π π = 0
649 648 fveq2i int topGen ran . π π 0 π π = int topGen ran . 0
650 61 cldopn 0 Clsd topGen ran . 0 topGen ran .
651 59 650 ax-mp 0 topGen ran .
652 isopn3i topGen ran . Top 0 topGen ran . int topGen ran . 0 = 0
653 453 651 652 mp2an int topGen ran . 0 = 0
654 649 653 eqtri int topGen ran . π π 0 π π = 0
655 630 654 eleqtrrdi s π π ¬ s = 0 s int topGen ran . π π 0 π π
656 655 537 elind s π π ¬ s = 0 s int topGen ran . π π 0 π π π π
657 eqid topGen ran . 𝑡 π π = topGen ran . 𝑡 π π
658 61 657 restntr topGen ran . Top π π π π 0 π π int topGen ran . 𝑡 π π π π 0 = int topGen ran . π π 0 π π π π
659 453 427 613 658 mp3an int topGen ran . 𝑡 π π π π 0 = int topGen ran . π π 0 π π π π
660 656 659 eleqtrrdi s π π ¬ s = 0 s int topGen ran . 𝑡 π π π π 0
661 14 a1i s π π ¬ s = 0 K : π π
662 451 toponunii π π = topGen ran . 𝑡 π π
663 662 596 cnprest topGen ran . 𝑡 π π Top π π 0 π π s int topGen ran . 𝑡 π π π π 0 K : π π K topGen ran . 𝑡 π π CnP TopOpen fld s K π π 0 topGen ran . 𝑡 π π 𝑡 π π 0 CnP TopOpen fld s
664 627 660 661 663 syl12anc s π π ¬ s = 0 K topGen ran . 𝑡 π π CnP TopOpen fld s K π π 0 topGen ran . 𝑡 π π 𝑡 π π 0 CnP TopOpen fld s
665 625 664 mpbird s π π ¬ s = 0 K topGen ran . 𝑡 π π CnP TopOpen fld s
666 536 665 pm2.61dan s π π K topGen ran . 𝑡 π π CnP TopOpen fld s
667 666 rgen s π π K topGen ran . 𝑡 π π CnP TopOpen fld s
668 cncnp topGen ran . 𝑡 π π TopOn π π TopOpen fld TopOn K topGen ran . 𝑡 π π Cn TopOpen fld K : π π s π π K topGen ran . 𝑡 π π CnP TopOpen fld s
669 451 605 668 mp2an K topGen ran . 𝑡 π π Cn TopOpen fld K : π π s π π K topGen ran . 𝑡 π π CnP TopOpen fld s
670 14 667 669 mpbir2an K topGen ran . 𝑡 π π Cn TopOpen fld
671 56 532 599 cncfcn π π π π cn = topGen ran . 𝑡 π π Cn TopOpen fld
672 517 144 671 mp2an π π cn = topGen ran . 𝑡 π π Cn TopOpen fld
673 672 eqcomi topGen ran . 𝑡 π π Cn TopOpen fld = π π cn
674 670 673 eleqtri K : π π cn
675 cncffvrn K : π π cn K : π π cn K : π π
676 12 674 675 mp2an K : π π cn K : π π
677 11 676 mpbir K : π π cn