Metamath Proof Explorer


Theorem fourierdlem66

Description: Value of the G function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem66.f φ F :
fourierdlem66.x φ X
fourierdlem66.y φ Y
fourierdlem66.w φ W
fourierdlem66.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
fourierdlem66.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem66.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem66.u U = s π π H s K s
fourierdlem66.s S = s π π sin n + 1 2 s
fourierdlem66.g G = s π π U s S s
fourierdlem66.a A = π π 0
Assertion fourierdlem66 φ n s A G s = π F X + s if 0 < s Y W D n s

Proof

Step Hyp Ref Expression
1 fourierdlem66.f φ F :
2 fourierdlem66.x φ X
3 fourierdlem66.y φ Y
4 fourierdlem66.w φ W
5 fourierdlem66.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
6 fourierdlem66.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
7 fourierdlem66.k K = s π π if s = 0 1 s 2 sin s 2
8 fourierdlem66.u U = s π π H s K s
9 fourierdlem66.s S = s π π sin n + 1 2 s
10 fourierdlem66.g G = s π π U s S s
11 fourierdlem66.a A = π π 0
12 11 eqimssi A π π 0
13 difss π π 0 π π
14 12 13 sstri A π π
15 14 a1i φ A π π
16 15 sselda φ s A s π π
17 16 adantlr φ n s A s π π
18 1 adantr φ n F :
19 2 adantr φ n X
20 3 adantr φ n Y
21 4 adantr φ n W
22 18 19 20 21 6 7 8 fourierdlem55 φ n U : π π
23 22 adantr φ n s A U : π π
24 23 17 ffvelrnd φ n s A U s
25 nnre n n
26 9 fourierdlem5 n S : π π
27 25 26 syl n S : π π
28 27 ad2antlr φ n s A S : π π
29 28 17 ffvelrnd φ n s A S s
30 24 29 remulcld φ n s A U s S s
31 10 fvmpt2 s π π U s S s G s = U s S s
32 17 30 31 syl2anc φ n s A G s = U s S s
33 1 2 3 4 6 fourierdlem9 φ H : π π
34 33 adantr φ s A H : π π
35 34 16 ffvelrnd φ s A H s
36 7 fourierdlem43 K : π π
37 36 a1i φ s A K : π π
38 37 16 ffvelrnd φ s A K s
39 35 38 remulcld φ s A H s K s
40 8 fvmpt2 s π π H s K s U s = H s K s
41 16 39 40 syl2anc φ s A U s = H s K s
42 0red φ s A 0
43 1 adantr φ s A F :
44 2 adantr φ s A X
45 pire π
46 45 renegcli π
47 iccssre π π π π
48 46 45 47 mp2an π π
49 14 sseli s A s π π
50 48 49 sselid s A s
51 50 adantl φ s A s
52 44 51 readdcld φ s A X + s
53 43 52 ffvelrnd φ s A F X + s
54 3 4 ifcld φ if 0 < s Y W
55 54 adantr φ s A if 0 < s Y W
56 53 55 resubcld φ s A F X + s if 0 < s Y W
57 simpr φ s A s A
58 12 57 sselid φ s A s π π 0
59 58 eldifbd φ s A ¬ s 0
60 velsn s 0 s = 0
61 59 60 sylnib φ s A ¬ s = 0
62 61 neqned φ s A s 0
63 56 51 62 redivcld φ s A F X + s if 0 < s Y W s
64 42 63 ifcld φ s A if s = 0 0 F X + s if 0 < s Y W s
65 6 fvmpt2 s π π if s = 0 0 F X + s if 0 < s Y W s H s = if s = 0 0 F X + s if 0 < s Y W s
66 16 64 65 syl2anc φ s A H s = if s = 0 0 F X + s if 0 < s Y W s
67 61 iffalsed φ s A if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
68 66 67 eqtrd φ s A H s = F X + s if 0 < s Y W s
69 1red φ s A 1
70 2re 2
71 70 a1i φ s A 2
72 51 rehalfcld φ s A s 2
73 72 resincld φ s A sin s 2
74 71 73 remulcld φ s A 2 sin s 2
75 2cnd φ s A 2
76 73 recnd φ s A sin s 2
77 2ne0 2 0
78 77 a1i φ s A 2 0
79 fourierdlem44 s π π s 0 sin s 2 0
80 16 62 79 syl2anc φ s A sin s 2 0
81 75 76 78 80 mulne0d φ s A 2 sin s 2 0
82 51 74 81 redivcld φ s A s 2 sin s 2
83 69 82 ifcld φ s A if s = 0 1 s 2 sin s 2
84 7 fvmpt2 s π π if s = 0 1 s 2 sin s 2 K s = if s = 0 1 s 2 sin s 2
85 16 83 84 syl2anc φ s A K s = if s = 0 1 s 2 sin s 2
86 61 iffalsed φ s A if s = 0 1 s 2 sin s 2 = s 2 sin s 2
87 85 86 eqtrd φ s A K s = s 2 sin s 2
88 68 87 oveq12d φ s A H s K s = F X + s if 0 < s Y W s s 2 sin s 2
89 56 recnd φ s A F X + s if 0 < s Y W
90 51 recnd φ s A s
91 75 76 mulcld φ s A 2 sin s 2
92 89 90 91 62 81 dmdcan2d φ s A F X + s if 0 < s Y W s s 2 sin s 2 = F X + s if 0 < s Y W 2 sin s 2
93 41 88 92 3eqtrd φ s A U s = F X + s if 0 < s Y W 2 sin s 2
94 93 adantlr φ n s A U s = F X + s if 0 < s Y W 2 sin s 2
95 25 ad2antlr φ n s A n
96 1red φ n s A 1
97 96 rehalfcld φ n s A 1 2
98 95 97 readdcld φ n s A n + 1 2
99 50 adantl φ n s A s
100 98 99 remulcld φ n s A n + 1 2 s
101 100 resincld φ n s A sin n + 1 2 s
102 9 fvmpt2 s π π sin n + 1 2 s S s = sin n + 1 2 s
103 17 101 102 syl2anc φ n s A S s = sin n + 1 2 s
104 94 103 oveq12d φ n s A U s S s = F X + s if 0 < s Y W 2 sin s 2 sin n + 1 2 s
105 89 adantlr φ n s A F X + s if 0 < s Y W
106 91 adantlr φ n s A 2 sin s 2
107 101 recnd φ n s A sin n + 1 2 s
108 81 adantlr φ n s A 2 sin s 2 0
109 105 106 107 108 div32d φ n s A F X + s if 0 < s Y W 2 sin s 2 sin n + 1 2 s = F X + s if 0 < s Y W sin n + 1 2 s 2 sin s 2
110 25 adantr n s A n
111 halfre 1 2
112 111 a1i n s A 1 2
113 110 112 readdcld n s A n + 1 2
114 50 adantl n s A s
115 113 114 remulcld n s A n + 1 2 s
116 115 resincld n s A sin n + 1 2 s
117 116 recnd n s A sin n + 1 2 s
118 70 a1i n s A 2
119 114 rehalfcld n s A s 2
120 119 resincld n s A sin s 2
121 118 120 remulcld n s A 2 sin s 2
122 121 recnd n s A 2 sin s 2
123 picn π
124 123 a1i n s A π
125 2cnd s A 2
126 rehalfcl s s 2
127 resincl s 2 sin s 2
128 50 126 127 3syl s A sin s 2
129 128 recnd s A sin s 2
130 77 a1i s A 2 0
131 eldifsni s π π 0 s 0
132 131 11 eleq2s s A s 0
133 49 132 79 syl2anc s A sin s 2 0
134 125 129 130 133 mulne0d s A 2 sin s 2 0
135 134 adantl n s A 2 sin s 2 0
136 0re 0
137 pipos 0 < π
138 136 137 gtneii π 0
139 138 a1i n s A π 0
140 117 122 124 135 139 divdiv1d n s A sin n + 1 2 s 2 sin s 2 π = sin n + 1 2 s 2 sin s 2 π
141 2cnd n s A 2
142 129 adantl n s A sin s 2
143 141 142 124 mulassd n s A 2 sin s 2 π = 2 sin s 2 π
144 143 oveq2d n s A sin n + 1 2 s 2 sin s 2 π = sin n + 1 2 s 2 sin s 2 π
145 142 124 mulcomd n s A sin s 2 π = π sin s 2
146 145 oveq2d n s A 2 sin s 2 π = 2 π sin s 2
147 141 124 142 mulassd n s A 2 π sin s 2 = 2 π sin s 2
148 146 147 eqtr4d n s A 2 sin s 2 π = 2 π sin s 2
149 148 oveq2d n s A sin n + 1 2 s 2 sin s 2 π = sin n + 1 2 s 2 π sin s 2
150 140 144 149 3eqtrd n s A sin n + 1 2 s 2 sin s 2 π = sin n + 1 2 s 2 π sin s 2
151 150 oveq2d n s A π sin n + 1 2 s 2 sin s 2 π = π sin n + 1 2 s 2 π sin s 2
152 116 121 135 redivcld n s A sin n + 1 2 s 2 sin s 2
153 152 recnd n s A sin n + 1 2 s 2 sin s 2
154 153 124 139 divcan2d n s A π sin n + 1 2 s 2 sin s 2 π = sin n + 1 2 s 2 sin s 2
155 5 dirkerval2 n s D n s = if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
156 50 155 sylan2 n s A D n s = if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
157 fourierdlem24 s π π 0 s mod 2 π 0
158 157 11 eleq2s s A s mod 2 π 0
159 158 neneqd s A ¬ s mod 2 π = 0
160 159 adantl n s A ¬ s mod 2 π = 0
161 160 iffalsed n s A if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2 = sin n + 1 2 s 2 π sin s 2
162 156 161 eqtr2d n s A sin n + 1 2 s 2 π sin s 2 = D n s
163 162 oveq2d n s A π sin n + 1 2 s 2 π sin s 2 = π D n s
164 151 154 163 3eqtr3d n s A sin n + 1 2 s 2 sin s 2 = π D n s
165 164 oveq2d n s A F X + s if 0 < s Y W sin n + 1 2 s 2 sin s 2 = F X + s if 0 < s Y W π D n s
166 165 adantll φ n s A F X + s if 0 < s Y W sin n + 1 2 s 2 sin s 2 = F X + s if 0 < s Y W π D n s
167 123 a1i φ n s A π
168 5 dirkerre n s D n s
169 50 168 sylan2 n s A D n s
170 169 recnd n s A D n s
171 170 adantll φ n s A D n s
172 105 167 171 mul12d φ n s A F X + s if 0 < s Y W π D n s = π F X + s if 0 < s Y W D n s
173 109 166 172 3eqtrd φ n s A F X + s if 0 < s Y W 2 sin s 2 sin n + 1 2 s = π F X + s if 0 < s Y W D n s
174 32 104 173 3eqtrd φ n s A G s = π F X + s if 0 < s Y W D n s