Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem66.f |
|
2 |
|
fourierdlem66.x |
|
3 |
|
fourierdlem66.y |
|
4 |
|
fourierdlem66.w |
|
5 |
|
fourierdlem66.d |
|
6 |
|
fourierdlem66.h |
|
7 |
|
fourierdlem66.k |
|
8 |
|
fourierdlem66.u |
|
9 |
|
fourierdlem66.s |
|
10 |
|
fourierdlem66.g |
|
11 |
|
fourierdlem66.a |
|
12 |
11
|
eqimssi |
|
13 |
|
difss |
|
14 |
12 13
|
sstri |
|
15 |
14
|
a1i |
|
16 |
15
|
sselda |
|
17 |
16
|
adantlr |
|
18 |
1
|
adantr |
|
19 |
2
|
adantr |
|
20 |
3
|
adantr |
|
21 |
4
|
adantr |
|
22 |
18 19 20 21 6 7 8
|
fourierdlem55 |
|
23 |
22
|
adantr |
|
24 |
23 17
|
ffvelrnd |
|
25 |
|
nnre |
|
26 |
9
|
fourierdlem5 |
|
27 |
25 26
|
syl |
|
28 |
27
|
ad2antlr |
|
29 |
28 17
|
ffvelrnd |
|
30 |
24 29
|
remulcld |
|
31 |
10
|
fvmpt2 |
|
32 |
17 30 31
|
syl2anc |
|
33 |
1 2 3 4 6
|
fourierdlem9 |
|
34 |
33
|
adantr |
|
35 |
34 16
|
ffvelrnd |
|
36 |
7
|
fourierdlem43 |
|
37 |
36
|
a1i |
|
38 |
37 16
|
ffvelrnd |
|
39 |
35 38
|
remulcld |
|
40 |
8
|
fvmpt2 |
|
41 |
16 39 40
|
syl2anc |
|
42 |
|
0red |
|
43 |
1
|
adantr |
|
44 |
2
|
adantr |
|
45 |
|
pire |
|
46 |
45
|
renegcli |
|
47 |
|
iccssre |
|
48 |
46 45 47
|
mp2an |
|
49 |
14
|
sseli |
|
50 |
48 49
|
sselid |
|
51 |
50
|
adantl |
|
52 |
44 51
|
readdcld |
|
53 |
43 52
|
ffvelrnd |
|
54 |
3 4
|
ifcld |
|
55 |
54
|
adantr |
|
56 |
53 55
|
resubcld |
|
57 |
|
simpr |
|
58 |
12 57
|
sselid |
|
59 |
58
|
eldifbd |
|
60 |
|
velsn |
|
61 |
59 60
|
sylnib |
|
62 |
61
|
neqned |
|
63 |
56 51 62
|
redivcld |
|
64 |
42 63
|
ifcld |
|
65 |
6
|
fvmpt2 |
|
66 |
16 64 65
|
syl2anc |
|
67 |
61
|
iffalsed |
|
68 |
66 67
|
eqtrd |
|
69 |
|
1red |
|
70 |
|
2re |
|
71 |
70
|
a1i |
|
72 |
51
|
rehalfcld |
|
73 |
72
|
resincld |
|
74 |
71 73
|
remulcld |
|
75 |
|
2cnd |
|
76 |
73
|
recnd |
|
77 |
|
2ne0 |
|
78 |
77
|
a1i |
|
79 |
|
fourierdlem44 |
|
80 |
16 62 79
|
syl2anc |
|
81 |
75 76 78 80
|
mulne0d |
|
82 |
51 74 81
|
redivcld |
|
83 |
69 82
|
ifcld |
|
84 |
7
|
fvmpt2 |
|
85 |
16 83 84
|
syl2anc |
|
86 |
61
|
iffalsed |
|
87 |
85 86
|
eqtrd |
|
88 |
68 87
|
oveq12d |
|
89 |
56
|
recnd |
|
90 |
51
|
recnd |
|
91 |
75 76
|
mulcld |
|
92 |
89 90 91 62 81
|
dmdcan2d |
|
93 |
41 88 92
|
3eqtrd |
|
94 |
93
|
adantlr |
|
95 |
25
|
ad2antlr |
|
96 |
|
1red |
|
97 |
96
|
rehalfcld |
|
98 |
95 97
|
readdcld |
|
99 |
50
|
adantl |
|
100 |
98 99
|
remulcld |
|
101 |
100
|
resincld |
|
102 |
9
|
fvmpt2 |
|
103 |
17 101 102
|
syl2anc |
|
104 |
94 103
|
oveq12d |
|
105 |
89
|
adantlr |
|
106 |
91
|
adantlr |
|
107 |
101
|
recnd |
|
108 |
81
|
adantlr |
|
109 |
105 106 107 108
|
div32d |
|
110 |
25
|
adantr |
|
111 |
|
halfre |
|
112 |
111
|
a1i |
|
113 |
110 112
|
readdcld |
|
114 |
50
|
adantl |
|
115 |
113 114
|
remulcld |
|
116 |
115
|
resincld |
|
117 |
116
|
recnd |
|
118 |
70
|
a1i |
|
119 |
114
|
rehalfcld |
|
120 |
119
|
resincld |
|
121 |
118 120
|
remulcld |
|
122 |
121
|
recnd |
|
123 |
|
picn |
|
124 |
123
|
a1i |
|
125 |
|
2cnd |
|
126 |
|
rehalfcl |
|
127 |
|
resincl |
|
128 |
50 126 127
|
3syl |
|
129 |
128
|
recnd |
|
130 |
77
|
a1i |
|
131 |
|
eldifsni |
|
132 |
131 11
|
eleq2s |
|
133 |
49 132 79
|
syl2anc |
|
134 |
125 129 130 133
|
mulne0d |
|
135 |
134
|
adantl |
|
136 |
|
0re |
|
137 |
|
pipos |
|
138 |
136 137
|
gtneii |
|
139 |
138
|
a1i |
|
140 |
117 122 124 135 139
|
divdiv1d |
|
141 |
|
2cnd |
|
142 |
129
|
adantl |
|
143 |
141 142 124
|
mulassd |
|
144 |
143
|
oveq2d |
|
145 |
142 124
|
mulcomd |
|
146 |
145
|
oveq2d |
|
147 |
141 124 142
|
mulassd |
|
148 |
146 147
|
eqtr4d |
|
149 |
148
|
oveq2d |
|
150 |
140 144 149
|
3eqtrd |
|
151 |
150
|
oveq2d |
|
152 |
116 121 135
|
redivcld |
|
153 |
152
|
recnd |
|
154 |
153 124 139
|
divcan2d |
|
155 |
5
|
dirkerval2 |
|
156 |
50 155
|
sylan2 |
|
157 |
|
fourierdlem24 |
|
158 |
157 11
|
eleq2s |
|
159 |
158
|
neneqd |
|
160 |
159
|
adantl |
|
161 |
160
|
iffalsed |
|
162 |
156 161
|
eqtr2d |
|
163 |
162
|
oveq2d |
|
164 |
151 154 163
|
3eqtr3d |
|
165 |
164
|
oveq2d |
|
166 |
165
|
adantll |
|
167 |
123
|
a1i |
|
168 |
5
|
dirkerre |
|
169 |
50 168
|
sylan2 |
|
170 |
169
|
recnd |
|
171 |
170
|
adantll |
|
172 |
105 167 171
|
mul12d |
|
173 |
109 166 172
|
3eqtrd |
|
174 |
32 104 173
|
3eqtrd |
|