Metamath Proof Explorer


Theorem fourierdlem67

Description: G is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem67.f φ F :
fourierdlem67.x φ X
fourierdlem67.y φ Y
fourierdlem67.w φ W
fourierdlem67.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem67.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem67.u U = s π π H s K s
fourierdlem67.n φ N
fourierdlem67.s S = s π π sin N + 1 2 s
fourierdlem67.g G = s π π U s S s
Assertion fourierdlem67 φ G : π π

Proof

Step Hyp Ref Expression
1 fourierdlem67.f φ F :
2 fourierdlem67.x φ X
3 fourierdlem67.y φ Y
4 fourierdlem67.w φ W
5 fourierdlem67.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
6 fourierdlem67.k K = s π π if s = 0 1 s 2 sin s 2
7 fourierdlem67.u U = s π π H s K s
8 fourierdlem67.n φ N
9 fourierdlem67.s S = s π π sin N + 1 2 s
10 fourierdlem67.g G = s π π U s S s
11 1 2 3 4 5 6 7 fourierdlem55 φ U : π π
12 11 ffvelrnda φ s π π U s
13 9 fourierdlem5 N S : π π
14 8 13 syl φ S : π π
15 14 ffvelrnda φ s π π S s
16 12 15 remulcld φ s π π U s S s
17 16 10 fmptd φ G : π π