Metamath Proof Explorer


Theorem fourierdlem69

Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem69.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem69.m φ M
fourierdlem69.q φ Q P M
fourierdlem69.f φ F : A B
fourierdlem69.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem69.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem69.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
Assertion fourierdlem69 φ F 𝐿 1

Proof

Step Hyp Ref Expression
1 fourierdlem69.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem69.m φ M
3 fourierdlem69.q φ Q P M
4 fourierdlem69.f φ F : A B
5 fourierdlem69.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
6 fourierdlem69.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
7 fourierdlem69.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
8 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
9 2 8 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
10 3 9 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
11 10 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
12 11 simpld φ Q 0 = A Q M = B
13 12 simpld φ Q 0 = A
14 12 simprd φ Q M = B
15 13 14 oveq12d φ Q 0 Q M = A B
16 15 feq2d φ F : Q 0 Q M F : A B
17 4 16 mpbird φ F : Q 0 Q M
18 17 feqmptd φ F = x Q 0 Q M F x
19 nfv x φ
20 0zd φ 0
21 nnuz = 1
22 1e0p1 1 = 0 + 1
23 22 fveq2i 1 = 0 + 1
24 21 23 eqtri = 0 + 1
25 2 24 eleqtrdi φ M 0 + 1
26 10 simpld φ Q 0 M
27 elmapi Q 0 M Q : 0 M
28 26 27 syl φ Q : 0 M
29 28 ffvelrnda φ i 0 M Q i
30 11 simprd φ i 0 ..^ M Q i < Q i + 1
31 30 r19.21bi φ i 0 ..^ M Q i < Q i + 1
32 4 adantr φ x Q 0 Q M F : A B
33 simpr φ x Q 0 Q M x Q 0 Q M
34 13 adantr φ x Q 0 Q M Q 0 = A
35 14 adantr φ x Q 0 Q M Q M = B
36 34 35 oveq12d φ x Q 0 Q M Q 0 Q M = A B
37 33 36 eleqtrd φ x Q 0 Q M x A B
38 32 37 ffvelrnd φ x Q 0 Q M F x
39 28 adantr φ i 0 ..^ M Q : 0 M
40 elfzofz i 0 ..^ M i 0 M
41 40 adantl φ i 0 ..^ M i 0 M
42 39 41 ffvelrnd φ i 0 ..^ M Q i
43 fzofzp1 i 0 ..^ M i + 1 0 M
44 43 adantl φ i 0 ..^ M i + 1 0 M
45 39 44 ffvelrnd φ i 0 ..^ M Q i + 1
46 4 adantr φ i 0 ..^ M F : A B
47 ioossicc Q i Q i + 1 Q i Q i + 1
48 1 2 3 fourierdlem11 φ A B A < B
49 48 simp1d φ A
50 49 rexrd φ A *
51 50 adantr φ i 0 ..^ M A *
52 48 simp2d φ B
53 52 rexrd φ B *
54 53 adantr φ i 0 ..^ M B *
55 1 2 3 fourierdlem15 φ Q : 0 M A B
56 55 adantr φ i 0 ..^ M Q : 0 M A B
57 simpr φ i 0 ..^ M i 0 ..^ M
58 51 54 56 57 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 A B
59 47 58 sstrid φ i 0 ..^ M Q i Q i + 1 A B
60 46 59 feqresmpt φ i 0 ..^ M F Q i Q i + 1 = x Q i Q i + 1 F x
61 60 5 eqeltrrd φ i 0 ..^ M x Q i Q i + 1 F x : Q i Q i + 1 cn
62 60 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i + 1 = x Q i Q i + 1 F x lim Q i + 1
63 7 62 eleqtrd φ i 0 ..^ M L x Q i Q i + 1 F x lim Q i + 1
64 60 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i = x Q i Q i + 1 F x lim Q i
65 6 64 eleqtrd φ i 0 ..^ M R x Q i Q i + 1 F x lim Q i
66 42 45 61 63 65 iblcncfioo φ i 0 ..^ M x Q i Q i + 1 F x 𝐿 1
67 46 adantr φ i 0 ..^ M x Q i Q i + 1 F : A B
68 58 sselda φ i 0 ..^ M x Q i Q i + 1 x A B
69 67 68 ffvelrnd φ i 0 ..^ M x Q i Q i + 1 F x
70 42 45 66 69 ibliooicc φ i 0 ..^ M x Q i Q i + 1 F x 𝐿 1
71 19 20 25 29 31 38 70 iblspltprt φ x Q 0 Q M F x 𝐿 1
72 18 71 eqeltrd φ F 𝐿 1