Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem69.p |
|
2 |
|
fourierdlem69.m |
|
3 |
|
fourierdlem69.q |
|
4 |
|
fourierdlem69.f |
|
5 |
|
fourierdlem69.fcn |
|
6 |
|
fourierdlem69.r |
|
7 |
|
fourierdlem69.l |
|
8 |
1
|
fourierdlem2 |
|
9 |
2 8
|
syl |
|
10 |
3 9
|
mpbid |
|
11 |
10
|
simprd |
|
12 |
11
|
simpld |
|
13 |
12
|
simpld |
|
14 |
12
|
simprd |
|
15 |
13 14
|
oveq12d |
|
16 |
15
|
feq2d |
|
17 |
4 16
|
mpbird |
|
18 |
17
|
feqmptd |
|
19 |
|
nfv |
|
20 |
|
0zd |
|
21 |
|
nnuz |
|
22 |
|
1e0p1 |
|
23 |
22
|
fveq2i |
|
24 |
21 23
|
eqtri |
|
25 |
2 24
|
eleqtrdi |
|
26 |
10
|
simpld |
|
27 |
|
elmapi |
|
28 |
26 27
|
syl |
|
29 |
28
|
ffvelrnda |
|
30 |
11
|
simprd |
|
31 |
30
|
r19.21bi |
|
32 |
4
|
adantr |
|
33 |
|
simpr |
|
34 |
13
|
adantr |
|
35 |
14
|
adantr |
|
36 |
34 35
|
oveq12d |
|
37 |
33 36
|
eleqtrd |
|
38 |
32 37
|
ffvelrnd |
|
39 |
28
|
adantr |
|
40 |
|
elfzofz |
|
41 |
40
|
adantl |
|
42 |
39 41
|
ffvelrnd |
|
43 |
|
fzofzp1 |
|
44 |
43
|
adantl |
|
45 |
39 44
|
ffvelrnd |
|
46 |
4
|
adantr |
|
47 |
|
ioossicc |
|
48 |
1 2 3
|
fourierdlem11 |
|
49 |
48
|
simp1d |
|
50 |
49
|
rexrd |
|
51 |
50
|
adantr |
|
52 |
48
|
simp2d |
|
53 |
52
|
rexrd |
|
54 |
53
|
adantr |
|
55 |
1 2 3
|
fourierdlem15 |
|
56 |
55
|
adantr |
|
57 |
|
simpr |
|
58 |
51 54 56 57
|
fourierdlem8 |
|
59 |
47 58
|
sstrid |
|
60 |
46 59
|
feqresmpt |
|
61 |
60 5
|
eqeltrrd |
|
62 |
60
|
oveq1d |
|
63 |
7 62
|
eleqtrd |
|
64 |
60
|
oveq1d |
|
65 |
6 64
|
eleqtrd |
|
66 |
42 45 61 63 65
|
iblcncfioo |
|
67 |
46
|
adantr |
|
68 |
58
|
sselda |
|
69 |
67 68
|
ffvelrnd |
|
70 |
42 45 66 69
|
ibliooicc |
|
71 |
19 20 25 29 31 38 70
|
iblspltprt |
|
72 |
18 71
|
eqeltrd |
|