Metamath Proof Explorer


Theorem fourierdlem70

Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem70.a φ A
fourierdlem70.2 φ B
fourierdlem70.aleb φ A B
fourierdlem70.f φ F : A B
fourierdlem70.m φ M
fourierdlem70.q φ Q : 0 M
fourierdlem70.q0 φ Q 0 = A
fourierdlem70.qm φ Q M = B
fourierdlem70.qlt φ i 0 ..^ M Q i < Q i + 1
fourierdlem70.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem70.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem70.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem70.i I = i 0 ..^ M Q i Q i + 1
Assertion fourierdlem70 φ x s A B F s x

Proof

Step Hyp Ref Expression
1 fourierdlem70.a φ A
2 fourierdlem70.2 φ B
3 fourierdlem70.aleb φ A B
4 fourierdlem70.f φ F : A B
5 fourierdlem70.m φ M
6 fourierdlem70.q φ Q : 0 M
7 fourierdlem70.q0 φ Q 0 = A
8 fourierdlem70.qm φ Q M = B
9 fourierdlem70.qlt φ i 0 ..^ M Q i < Q i + 1
10 fourierdlem70.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
11 fourierdlem70.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
12 fourierdlem70.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
13 fourierdlem70.i I = i 0 ..^ M Q i Q i + 1
14 prfi ran Q ran I Fin
15 14 a1i φ ran Q ran I Fin
16 simpr φ s ran Q ran I s ran Q ran I
17 ovex 0 M V
18 fex Q : 0 M 0 M V Q V
19 6 17 18 sylancl φ Q V
20 rnexg Q V ran Q V
21 19 20 syl φ ran Q V
22 fzofi 0 ..^ M Fin
23 13 rnmptfi 0 ..^ M Fin ran I Fin
24 22 23 ax-mp ran I Fin
25 24 elexi ran I V
26 25 uniex ran I V
27 uniprg ran Q V ran I V ran Q ran I = ran Q ran I
28 21 26 27 sylancl φ ran Q ran I = ran Q ran I
29 28 adantr φ s ran Q ran I ran Q ran I = ran Q ran I
30 16 29 eleqtrd φ s ran Q ran I s ran Q ran I
31 eqid y v 0 y | v 0 = A v y = B i 0 ..^ y v i < v i + 1 = y v 0 y | v 0 = A v y = B i 0 ..^ y v i < v i + 1
32 reex V
33 32 17 elmap Q 0 M Q : 0 M
34 6 33 sylibr φ Q 0 M
35 7 8 jca φ Q 0 = A Q M = B
36 9 ralrimiva φ i 0 ..^ M Q i < Q i + 1
37 34 35 36 jca32 φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
38 31 fourierdlem2 M Q y v 0 y | v 0 = A v y = B i 0 ..^ y v i < v i + 1 M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
39 5 38 syl φ Q y v 0 y | v 0 = A v y = B i 0 ..^ y v i < v i + 1 M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
40 37 39 mpbird φ Q y v 0 y | v 0 = A v y = B i 0 ..^ y v i < v i + 1 M
41 31 5 40 fourierdlem15 φ Q : 0 M A B
42 41 frnd φ ran Q A B
43 42 sselda φ s ran Q s A B
44 43 adantlr φ s ran Q ran I s ran Q s A B
45 simpll φ s ran Q ran I ¬ s ran Q φ
46 elunnel1 s ran Q ran I ¬ s ran Q s ran I
47 46 adantll φ s ran Q ran I ¬ s ran Q s ran I
48 simpr φ s ran I s ran I
49 13 funmpt2 Fun I
50 elunirn Fun I s ran I i dom I s I i
51 49 50 mp1i φ s ran I s ran I i dom I s I i
52 48 51 mpbid φ s ran I i dom I s I i
53 id i dom I i dom I
54 ovex Q i Q i + 1 V
55 54 13 dmmpti dom I = 0 ..^ M
56 53 55 eleqtrdi i dom I i 0 ..^ M
57 13 fvmpt2 i 0 ..^ M Q i Q i + 1 V I i = Q i Q i + 1
58 56 54 57 sylancl i dom I I i = Q i Q i + 1
59 58 adantl φ i dom I I i = Q i Q i + 1
60 ioossicc Q i Q i + 1 Q i Q i + 1
61 1 rexrd φ A *
62 61 adantr φ i dom I A *
63 2 rexrd φ B *
64 63 adantr φ i dom I B *
65 41 adantr φ i dom I Q : 0 M A B
66 56 adantl φ i dom I i 0 ..^ M
67 62 64 65 66 fourierdlem8 φ i dom I Q i Q i + 1 A B
68 60 67 sstrid φ i dom I Q i Q i + 1 A B
69 59 68 eqsstrd φ i dom I I i A B
70 69 3adant3 φ i dom I s I i I i A B
71 simp3 φ i dom I s I i s I i
72 70 71 sseldd φ i dom I s I i s A B
73 72 3exp φ i dom I s I i s A B
74 73 adantr φ s ran I i dom I s I i s A B
75 74 rexlimdv φ s ran I i dom I s I i s A B
76 52 75 mpd φ s ran I s A B
77 45 47 76 syl2anc φ s ran Q ran I ¬ s ran Q s A B
78 44 77 pm2.61dan φ s ran Q ran I s A B
79 30 78 syldan φ s ran Q ran I s A B
80 4 ffvelrnda φ s A B F s
81 79 80 syldan φ s ran Q ran I F s
82 81 recnd φ s ran Q ran I F s
83 82 abscld φ s ran Q ran I F s
84 simpr φ w = ran Q w = ran Q
85 6 adantr φ w = ran Q Q : 0 M
86 fzfid φ w = ran Q 0 M Fin
87 rnffi Q : 0 M 0 M Fin ran Q Fin
88 85 86 87 syl2anc φ w = ran Q ran Q Fin
89 84 88 eqeltrd φ w = ran Q w Fin
90 89 adantlr φ w ran Q ran I w = ran Q w Fin
91 4 ad2antrr φ w = ran Q s w F : A B
92 simpll φ w = ran Q s w φ
93 simpr w = ran Q s w s w
94 simpl w = ran Q s w w = ran Q
95 93 94 eleqtrd w = ran Q s w s ran Q
96 95 adantll φ w = ran Q s w s ran Q
97 92 96 43 syl2anc φ w = ran Q s w s A B
98 91 97 ffvelrnd φ w = ran Q s w F s
99 98 recnd φ w = ran Q s w F s
100 99 abscld φ w = ran Q s w F s
101 100 ralrimiva φ w = ran Q s w F s
102 101 adantlr φ w ran Q ran I w = ran Q s w F s
103 fimaxre3 w Fin s w F s z s w F s z
104 90 102 103 syl2anc φ w ran Q ran I w = ran Q z s w F s z
105 simpll φ w ran Q ran I ¬ w = ran Q φ
106 neqne ¬ w = ran Q w ran Q
107 elprn1 w ran Q ran I w ran Q w = ran I
108 106 107 sylan2 w ran Q ran I ¬ w = ran Q w = ran I
109 108 adantll φ w ran Q ran I ¬ w = ran Q w = ran I
110 22 23 mp1i φ w = ran I ran I Fin
111 ax-resscn
112 111 a1i φ
113 4 112 fssd φ F : A B
114 113 ad2antrr φ w = ran I s ran I F : A B
115 76 adantlr φ w = ran I s ran I s A B
116 114 115 ffvelrnd φ w = ran I s ran I F s
117 116 abscld φ w = ran I s ran I F s
118 54 13 fnmpti I Fn 0 ..^ M
119 fvelrnb I Fn 0 ..^ M t ran I i 0 ..^ M I i = t
120 118 119 ax-mp t ran I i 0 ..^ M I i = t
121 120 biimpi t ran I i 0 ..^ M I i = t
122 121 adantl φ t ran I i 0 ..^ M I i = t
123 6 adantr φ i 0 ..^ M Q : 0 M
124 elfzofz i 0 ..^ M i 0 M
125 124 adantl φ i 0 ..^ M i 0 M
126 123 125 ffvelrnd φ i 0 ..^ M Q i
127 fzofzp1 i 0 ..^ M i + 1 0 M
128 127 adantl φ i 0 ..^ M i + 1 0 M
129 123 128 ffvelrnd φ i 0 ..^ M Q i + 1
130 126 129 10 12 11 cncfioobd φ i 0 ..^ M b s Q i Q i + 1 F Q i Q i + 1 s b
131 fvres s Q i Q i + 1 F Q i Q i + 1 s = F s
132 131 fveq2d s Q i Q i + 1 F Q i Q i + 1 s = F s
133 132 breq1d s Q i Q i + 1 F Q i Q i + 1 s b F s b
134 133 adantl φ i 0 ..^ M s Q i Q i + 1 F Q i Q i + 1 s b F s b
135 134 ralbidva φ i 0 ..^ M s Q i Q i + 1 F Q i Q i + 1 s b s Q i Q i + 1 F s b
136 135 rexbidv φ i 0 ..^ M b s Q i Q i + 1 F Q i Q i + 1 s b b s Q i Q i + 1 F s b
137 130 136 mpbid φ i 0 ..^ M b s Q i Q i + 1 F s b
138 137 3adant3 φ i 0 ..^ M I i = t b s Q i Q i + 1 F s b
139 54 57 mpan2 i 0 ..^ M I i = Q i Q i + 1
140 139 eqcomd i 0 ..^ M Q i Q i + 1 = I i
141 140 adantr i 0 ..^ M I i = t Q i Q i + 1 = I i
142 simpr i 0 ..^ M I i = t I i = t
143 141 142 eqtrd i 0 ..^ M I i = t Q i Q i + 1 = t
144 143 raleqdv i 0 ..^ M I i = t s Q i Q i + 1 F s b s t F s b
145 144 rexbidv i 0 ..^ M I i = t b s Q i Q i + 1 F s b b s t F s b
146 145 3adant1 φ i 0 ..^ M I i = t b s Q i Q i + 1 F s b b s t F s b
147 138 146 mpbid φ i 0 ..^ M I i = t b s t F s b
148 147 3exp φ i 0 ..^ M I i = t b s t F s b
149 148 adantr φ t ran I i 0 ..^ M I i = t b s t F s b
150 149 rexlimdv φ t ran I i 0 ..^ M I i = t b s t F s b
151 122 150 mpd φ t ran I b s t F s b
152 151 adantlr φ w = ran I t ran I b s t F s b
153 eqimss w = ran I w ran I
154 153 adantl φ w = ran I w ran I
155 110 117 152 154 ssfiunibd φ w = ran I z s w F s z
156 105 109 155 syl2anc φ w ran Q ran I ¬ w = ran Q z s w F s z
157 104 156 pm2.61dan φ w ran Q ran I z s w F s z
158 5 ad2antrr φ t A B ¬ t ran Q M
159 6 ad2antrr φ t A B ¬ t ran Q Q : 0 M
160 simpr φ t A B t A B
161 7 eqcomd φ A = Q 0
162 8 eqcomd φ B = Q M
163 161 162 oveq12d φ A B = Q 0 Q M
164 163 adantr φ t A B A B = Q 0 Q M
165 160 164 eleqtrd φ t A B t Q 0 Q M
166 165 adantr φ t A B ¬ t ran Q t Q 0 Q M
167 simpr φ t A B ¬ t ran Q ¬ t ran Q
168 fveq2 k = j Q k = Q j
169 168 breq1d k = j Q k < t Q j < t
170 169 cbvrabv k 0 ..^ M | Q k < t = j 0 ..^ M | Q j < t
171 170 supeq1i sup k 0 ..^ M | Q k < t < = sup j 0 ..^ M | Q j < t <
172 158 159 166 167 171 fourierdlem25 φ t A B ¬ t ran Q i 0 ..^ M t Q i Q i + 1
173 139 eleq2d i 0 ..^ M t I i t Q i Q i + 1
174 173 rexbiia i 0 ..^ M t I i i 0 ..^ M t Q i Q i + 1
175 172 174 sylibr φ t A B ¬ t ran Q i 0 ..^ M t I i
176 55 eqcomi 0 ..^ M = dom I
177 176 rexeqi i 0 ..^ M t I i i dom I t I i
178 175 177 sylib φ t A B ¬ t ran Q i dom I t I i
179 elunirn Fun I t ran I i dom I t I i
180 49 179 mp1i φ t A B ¬ t ran Q t ran I i dom I t I i
181 178 180 mpbird φ t A B ¬ t ran Q t ran I
182 181 ex φ t A B ¬ t ran Q t ran I
183 182 orrd φ t A B t ran Q t ran I
184 elun t ran Q ran I t ran Q t ran I
185 183 184 sylibr φ t A B t ran Q ran I
186 185 ralrimiva φ t A B t ran Q ran I
187 dfss3 A B ran Q ran I t A B t ran Q ran I
188 186 187 sylibr φ A B ran Q ran I
189 188 28 sseqtrrd φ A B ran Q ran I
190 15 83 157 189 ssfiunibd φ x s A B F s x