Metamath Proof Explorer


Theorem fourierdlem71

Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem71.dmf φ dom F
fourierdlem71.f φ F : dom F
fourierdlem71.a φ A
fourierdlem71.b φ B
fourierdlem71.altb φ A < B
fourierdlem71.t T = B A
fourierdlem71.7 φ M
fourierdlem71.q φ Q : 0 M
fourierdlem71.q0 φ Q 0 = A
fourierdlem71.10 φ Q M = B
fourierdlem71.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem71.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem71.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem71.xpt φ x dom F k x + k T dom F
fourierdlem71.fxpt φ x dom F k F x + k T = F x
fourierdlem71.i I = i 0 ..^ M Q i Q i + 1
fourierdlem71.e E = x x + B x T T
Assertion fourierdlem71 φ y x dom F F x y

Proof

Step Hyp Ref Expression
1 fourierdlem71.dmf φ dom F
2 fourierdlem71.f φ F : dom F
3 fourierdlem71.a φ A
4 fourierdlem71.b φ B
5 fourierdlem71.altb φ A < B
6 fourierdlem71.t T = B A
7 fourierdlem71.7 φ M
8 fourierdlem71.q φ Q : 0 M
9 fourierdlem71.q0 φ Q 0 = A
10 fourierdlem71.10 φ Q M = B
11 fourierdlem71.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
12 fourierdlem71.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
13 fourierdlem71.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
14 fourierdlem71.xpt φ x dom F k x + k T dom F
15 fourierdlem71.fxpt φ x dom F k F x + k T = F x
16 fourierdlem71.i I = i 0 ..^ M Q i Q i + 1
17 fourierdlem71.e E = x x + B x T T
18 prfi ran Q dom F ran I Fin
19 18 a1i φ ran Q dom F ran I Fin
20 2 adantr φ x ran Q dom F ran I F : dom F
21 simpl φ x ran Q dom F ran I φ
22 simpr φ x ran Q dom F ran I x ran Q dom F ran I
23 ovex 0 M V
24 23 a1i φ 0 M V
25 8 24 fexd φ Q V
26 rnexg Q V ran Q V
27 inex1g ran Q V ran Q dom F V
28 25 26 27 3syl φ ran Q dom F V
29 28 adantr φ x ran Q dom F ran I ran Q dom F V
30 ovex 0 ..^ M V
31 30 mptex i 0 ..^ M Q i Q i + 1 V
32 16 31 eqeltri I V
33 32 rnex ran I V
34 33 a1i φ ran I V
35 34 uniexd φ ran I V
36 35 adantr φ x ran Q dom F ran I ran I V
37 uniprg ran Q dom F V ran I V ran Q dom F ran I = ran Q dom F ran I
38 29 36 37 syl2anc φ x ran Q dom F ran I ran Q dom F ran I = ran Q dom F ran I
39 22 38 eleqtrd φ x ran Q dom F ran I x ran Q dom F ran I
40 elinel2 x ran Q dom F x dom F
41 40 adantl φ x ran Q dom F ran I x ran Q dom F x dom F
42 simpll φ x ran Q dom F ran I ¬ x ran Q dom F φ
43 elunnel1 x ran Q dom F ran I ¬ x ran Q dom F x ran I
44 43 adantll φ x ran Q dom F ran I ¬ x ran Q dom F x ran I
45 16 funmpt2 Fun I
46 elunirn Fun I x ran I i dom I x I i
47 45 46 ax-mp x ran I i dom I x I i
48 47 biimpi x ran I i dom I x I i
49 48 adantl φ x ran I i dom I x I i
50 id i dom I i dom I
51 ovex Q i Q i + 1 V
52 51 16 dmmpti dom I = 0 ..^ M
53 50 52 eleqtrdi i dom I i 0 ..^ M
54 53 adantl φ i dom I i 0 ..^ M
55 51 a1i φ i dom I Q i Q i + 1 V
56 16 fvmpt2 i 0 ..^ M Q i Q i + 1 V I i = Q i Q i + 1
57 54 55 56 syl2anc φ i dom I I i = Q i Q i + 1
58 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
59 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
60 11 58 59 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
61 53 60 sylan2 φ i dom I dom F Q i Q i + 1 = Q i Q i + 1
62 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
63 61 62 sylibr φ i dom I Q i Q i + 1 dom F
64 57 63 eqsstrd φ i dom I I i dom F
65 64 3adant3 φ i dom I x I i I i dom F
66 simp3 φ i dom I x I i x I i
67 65 66 sseldd φ i dom I x I i x dom F
68 67 3exp φ i dom I x I i x dom F
69 68 adantr φ x ran I i dom I x I i x dom F
70 69 rexlimdv φ x ran I i dom I x I i x dom F
71 49 70 mpd φ x ran I x dom F
72 42 44 71 syl2anc φ x ran Q dom F ran I ¬ x ran Q dom F x dom F
73 41 72 pm2.61dan φ x ran Q dom F ran I x dom F
74 21 39 73 syl2anc φ x ran Q dom F ran I x dom F
75 20 74 ffvelrnd φ x ran Q dom F ran I F x
76 75 recnd φ x ran Q dom F ran I F x
77 76 abscld φ x ran Q dom F ran I F x
78 simpr φ w = ran Q dom F w = ran Q dom F
79 fzfid φ 0 M Fin
80 rnffi Q : 0 M 0 M Fin ran Q Fin
81 8 79 80 syl2anc φ ran Q Fin
82 infi ran Q Fin ran Q dom F Fin
83 81 82 syl φ ran Q dom F Fin
84 83 adantr φ w = ran Q dom F ran Q dom F Fin
85 78 84 eqeltrd φ w = ran Q dom F w Fin
86 simpll φ w = ran Q dom F x w φ
87 simpr w = ran Q dom F x w x w
88 simpl w = ran Q dom F x w w = ran Q dom F
89 87 88 eleqtrd w = ran Q dom F x w x ran Q dom F
90 89 adantll φ w = ran Q dom F x w x ran Q dom F
91 2 adantr φ x ran Q dom F F : dom F
92 40 adantl φ x ran Q dom F x dom F
93 91 92 ffvelrnd φ x ran Q dom F F x
94 93 recnd φ x ran Q dom F F x
95 94 abscld φ x ran Q dom F F x
96 86 90 95 syl2anc φ w = ran Q dom F x w F x
97 96 ralrimiva φ w = ran Q dom F x w F x
98 fimaxre3 w Fin x w F x y x w F x y
99 85 97 98 syl2anc φ w = ran Q dom F y x w F x y
100 99 adantlr φ w ran Q dom F ran I w = ran Q dom F y x w F x y
101 simpll φ w ran Q dom F ran I ¬ w = ran Q dom F φ
102 neqne ¬ w = ran Q dom F w ran Q dom F
103 elprn1 w ran Q dom F ran I w ran Q dom F w = ran I
104 102 103 sylan2 w ran Q dom F ran I ¬ w = ran Q dom F w = ran I
105 104 adantll φ w ran Q dom F ran I ¬ w = ran Q dom F w = ran I
106 fzofi 0 ..^ M Fin
107 16 rnmptfi 0 ..^ M Fin ran I Fin
108 106 107 ax-mp ran I Fin
109 108 a1i φ w = ran I ran I Fin
110 2 adantr φ x ran I F : dom F
111 110 71 ffvelrnd φ x ran I F x
112 111 recnd φ x ran I F x
113 112 adantlr φ w = ran I x ran I F x
114 113 abscld φ w = ran I x ran I F x
115 51 16 fnmpti I Fn 0 ..^ M
116 fvelrnb I Fn 0 ..^ M t ran I i 0 ..^ M I i = t
117 115 116 ax-mp t ran I i 0 ..^ M I i = t
118 117 biimpi t ran I i 0 ..^ M I i = t
119 118 adantl φ t ran I i 0 ..^ M I i = t
120 8 adantr φ i 0 ..^ M Q : 0 M
121 elfzofz i 0 ..^ M i 0 M
122 121 adantl φ i 0 ..^ M i 0 M
123 120 122 ffvelrnd φ i 0 ..^ M Q i
124 fzofzp1 i 0 ..^ M i + 1 0 M
125 124 adantl φ i 0 ..^ M i + 1 0 M
126 120 125 ffvelrnd φ i 0 ..^ M Q i + 1
127 123 126 11 13 12 cncfioobd φ i 0 ..^ M b x Q i Q i + 1 F Q i Q i + 1 x b
128 127 3adant3 φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b
129 fvres x Q i Q i + 1 F Q i Q i + 1 x = F x
130 129 fveq2d x Q i Q i + 1 F Q i Q i + 1 x = F x
131 130 breq1d x Q i Q i + 1 F Q i Q i + 1 x b F x b
132 131 adantl φ i 0 ..^ M x Q i Q i + 1 F Q i Q i + 1 x b F x b
133 132 ralbidva φ i 0 ..^ M x Q i Q i + 1 F Q i Q i + 1 x b x Q i Q i + 1 F x b
134 133 rexbidv φ i 0 ..^ M b x Q i Q i + 1 F Q i Q i + 1 x b b x Q i Q i + 1 F x b
135 134 3adant3 φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b b x Q i Q i + 1 F x b
136 51 56 mpan2 i 0 ..^ M I i = Q i Q i + 1
137 id I i = t I i = t
138 136 137 sylan9req i 0 ..^ M I i = t Q i Q i + 1 = t
139 138 3adant1 φ i 0 ..^ M I i = t Q i Q i + 1 = t
140 139 raleqdv φ i 0 ..^ M I i = t x Q i Q i + 1 F x b x t F x b
141 140 rexbidv φ i 0 ..^ M I i = t b x Q i Q i + 1 F x b b x t F x b
142 135 141 bitrd φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b b x t F x b
143 128 142 mpbid φ i 0 ..^ M I i = t b x t F x b
144 143 3exp φ i 0 ..^ M I i = t b x t F x b
145 144 adantr φ t ran I i 0 ..^ M I i = t b x t F x b
146 145 rexlimdv φ t ran I i 0 ..^ M I i = t b x t F x b
147 119 146 mpd φ t ran I b x t F x b
148 147 adantlr φ w = ran I t ran I b x t F x b
149 eqimss w = ran I w ran I
150 149 adantl φ w = ran I w ran I
151 109 114 148 150 ssfiunibd φ w = ran I y x w F x y
152 101 105 151 syl2anc φ w ran Q dom F ran I ¬ w = ran Q dom F y x w F x y
153 100 152 pm2.61dan φ w ran Q dom F ran I y x w F x y
154 simpr φ x A B dom F x ran Q x ran Q
155 elinel2 x A B dom F x dom F
156 155 ad2antlr φ x A B dom F x ran Q x dom F
157 154 156 elind φ x A B dom F x ran Q x ran Q dom F
158 elun1 x ran Q dom F x ran Q dom F ran I
159 157 158 syl φ x A B dom F x ran Q x ran Q dom F ran I
160 7 ad2antrr φ x A B dom F ¬ x ran Q M
161 8 ad2antrr φ x A B dom F ¬ x ran Q Q : 0 M
162 elinel1 x A B dom F x A B
163 162 adantl φ x A B dom F x A B
164 9 eqcomd φ A = Q 0
165 164 adantr φ x A B dom F A = Q 0
166 10 eqcomd φ B = Q M
167 166 adantr φ x A B dom F B = Q M
168 165 167 oveq12d φ x A B dom F A B = Q 0 Q M
169 163 168 eleqtrd φ x A B dom F x Q 0 Q M
170 169 adantr φ x A B dom F ¬ x ran Q x Q 0 Q M
171 simpr φ x A B dom F ¬ x ran Q ¬ x ran Q
172 fveq2 k = j Q k = Q j
173 172 breq1d k = j Q k < x Q j < x
174 173 cbvrabv k 0 ..^ M | Q k < x = j 0 ..^ M | Q j < x
175 174 supeq1i sup k 0 ..^ M | Q k < x < = sup j 0 ..^ M | Q j < x <
176 160 161 170 171 175 fourierdlem25 φ x A B dom F ¬ x ran Q i 0 ..^ M x Q i Q i + 1
177 53 ad2antrl φ i dom I x I i i 0 ..^ M
178 simprr φ i dom I x I i x I i
179 177 136 syl φ i dom I x I i I i = Q i Q i + 1
180 178 179 eleqtrd φ i dom I x I i x Q i Q i + 1
181 177 180 jca φ i dom I x I i i 0 ..^ M x Q i Q i + 1
182 id i 0 ..^ M i 0 ..^ M
183 182 52 eleqtrrdi i 0 ..^ M i dom I
184 183 ad2antrl φ i 0 ..^ M x Q i Q i + 1 i dom I
185 simprr φ i 0 ..^ M x Q i Q i + 1 x Q i Q i + 1
186 136 eqcomd i 0 ..^ M Q i Q i + 1 = I i
187 186 ad2antrl φ i 0 ..^ M x Q i Q i + 1 Q i Q i + 1 = I i
188 185 187 eleqtrd φ i 0 ..^ M x Q i Q i + 1 x I i
189 184 188 jca φ i 0 ..^ M x Q i Q i + 1 i dom I x I i
190 181 189 impbida φ i dom I x I i i 0 ..^ M x Q i Q i + 1
191 190 rexbidv2 φ i dom I x I i i 0 ..^ M x Q i Q i + 1
192 191 ad2antrr φ x A B dom F ¬ x ran Q i dom I x I i i 0 ..^ M x Q i Q i + 1
193 176 192 mpbird φ x A B dom F ¬ x ran Q i dom I x I i
194 193 47 sylibr φ x A B dom F ¬ x ran Q x ran I
195 elun2 x ran I x ran Q dom F ran I
196 194 195 syl φ x A B dom F ¬ x ran Q x ran Q dom F ran I
197 159 196 pm2.61dan φ x A B dom F x ran Q dom F ran I
198 197 ralrimiva φ x A B dom F x ran Q dom F ran I
199 dfss3 A B dom F ran Q dom F ran I x A B dom F x ran Q dom F ran I
200 198 199 sylibr φ A B dom F ran Q dom F ran I
201 28 35 37 syl2anc φ ran Q dom F ran I = ran Q dom F ran I
202 200 201 sseqtrrd φ A B dom F ran Q dom F ran I
203 19 77 153 202 ssfiunibd φ y x A B dom F F x y
204 nfv x φ
205 nfra1 x x A B dom F F x y
206 204 205 nfan x φ x A B dom F F x y
207 1 sselda φ x dom F x
208 4 adantr φ x dom F B
209 208 207 resubcld φ x dom F B x
210 4 3 resubcld φ B A
211 6 210 eqeltrid φ T
212 211 adantr φ x dom F T
213 3 4 posdifd φ A < B 0 < B A
214 5 213 mpbid φ 0 < B A
215 214 6 breqtrrdi φ 0 < T
216 215 gt0ne0d φ T 0
217 216 adantr φ x dom F T 0
218 209 212 217 redivcld φ x dom F B x T
219 218 flcld φ x dom F B x T
220 219 zred φ x dom F B x T
221 220 212 remulcld φ x dom F B x T T
222 207 221 readdcld φ x dom F x + B x T T
223 17 fvmpt2 x x + B x T T E x = x + B x T T
224 207 222 223 syl2anc φ x dom F E x = x + B x T T
225 224 fveq2d φ x dom F F E x = F x + B x T T
226 fvex B x T V
227 eleq1 k = B x T k B x T
228 227 anbi2d k = B x T φ x dom F k φ x dom F B x T
229 oveq1 k = B x T k T = B x T T
230 229 oveq2d k = B x T x + k T = x + B x T T
231 230 fveq2d k = B x T F x + k T = F x + B x T T
232 231 eqeq1d k = B x T F x + k T = F x F x + B x T T = F x
233 228 232 imbi12d k = B x T φ x dom F k F x + k T = F x φ x dom F B x T F x + B x T T = F x
234 226 233 15 vtocl φ x dom F B x T F x + B x T T = F x
235 219 234 mpdan φ x dom F F x + B x T T = F x
236 225 235 eqtr2d φ x dom F F x = F E x
237 236 fveq2d φ x dom F F x = F E x
238 237 adantlr φ x A B dom F F x y x dom F F x = F E x
239 fveq2 x = w F x = F w
240 239 fveq2d x = w F x = F w
241 240 breq1d x = w F x y F w y
242 241 cbvralvw x A B dom F F x y w A B dom F F w y
243 242 biimpi x A B dom F F x y w A B dom F F w y
244 243 ad2antlr φ x A B dom F F x y x dom F w A B dom F F w y
245 iocssicc A B A B
246 3 adantr φ x dom F A
247 5 adantr φ x dom F A < B
248 id x = y x = y
249 oveq2 x = y B x = B y
250 249 oveq1d x = y B x T = B y T
251 250 fveq2d x = y B x T = B y T
252 251 oveq1d x = y B x T T = B y T T
253 248 252 oveq12d x = y x + B x T T = y + B y T T
254 253 cbvmptv x x + B x T T = y y + B y T T
255 17 254 eqtri E = y y + B y T T
256 246 208 247 6 255 fourierdlem4 φ x dom F E : A B
257 256 207 ffvelrnd φ x dom F E x A B
258 245 257 sselid φ x dom F E x A B
259 230 eleq1d k = B x T x + k T dom F x + B x T T dom F
260 228 259 imbi12d k = B x T φ x dom F k x + k T dom F φ x dom F B x T x + B x T T dom F
261 226 260 14 vtocl φ x dom F B x T x + B x T T dom F
262 219 261 mpdan φ x dom F x + B x T T dom F
263 224 262 eqeltrd φ x dom F E x dom F
264 258 263 elind φ x dom F E x A B dom F
265 264 adantlr φ x A B dom F F x y x dom F E x A B dom F
266 fveq2 w = E x F w = F E x
267 266 fveq2d w = E x F w = F E x
268 267 breq1d w = E x F w y F E x y
269 268 rspccva w A B dom F F w y E x A B dom F F E x y
270 244 265 269 syl2anc φ x A B dom F F x y x dom F F E x y
271 238 270 eqbrtrd φ x A B dom F F x y x dom F F x y
272 271 ex φ x A B dom F F x y x dom F F x y
273 206 272 ralrimi φ x A B dom F F x y x dom F F x y
274 273 ex φ x A B dom F F x y x dom F F x y
275 274 reximdv φ y x A B dom F F x y y x dom F F x y
276 203 275 mpd φ y x dom F F x y