Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem72.f |
|
2 |
|
fourierdlem72.xre |
|
3 |
|
fourierdlem72.p |
|
4 |
|
fourierdlem72.m |
|
5 |
|
fourierdlem72.v |
|
6 |
|
fourierdlem72.dvcn |
|
7 |
|
fourierdlem72.a |
|
8 |
|
fourierdlem72.b |
|
9 |
|
fourierdlem72.altb |
|
10 |
|
fourierdlem72.ab |
|
11 |
|
fourierdlem72.n0 |
|
12 |
|
fourierdlem72.c |
|
13 |
|
fourierdlem72.q |
|
14 |
|
fourierdlem72.u |
|
15 |
|
fourierdlem72.abss |
|
16 |
|
fourierdlem72.h |
|
17 |
|
fourierdlem72.k |
|
18 |
|
fourierdlem72.o |
|
19 |
|
ovex |
|
20 |
19
|
a1i |
|
21 |
1
|
adantr |
|
22 |
2
|
adantr |
|
23 |
|
elioore |
|
24 |
23
|
adantl |
|
25 |
22 24
|
readdcld |
|
26 |
21 25
|
ffvelrnd |
|
27 |
12
|
adantr |
|
28 |
26 27
|
resubcld |
|
29 |
|
ioossicc |
|
30 |
29
|
sseli |
|
31 |
30
|
ad2antlr |
|
32 |
|
id |
|
33 |
32
|
necon1bi |
|
34 |
33
|
eleq1d |
|
35 |
34
|
adantl |
|
36 |
31 35
|
mpbid |
|
37 |
11
|
ad2antrr |
|
38 |
36 37
|
condan |
|
39 |
28 24 38
|
redivcld |
|
40 |
39 16
|
fmptd |
|
41 |
40
|
ffvelrnda |
|
42 |
|
2re |
|
43 |
42
|
a1i |
|
44 |
24
|
rehalfcld |
|
45 |
44
|
resincld |
|
46 |
43 45
|
remulcld |
|
47 |
|
2cnd |
|
48 |
24
|
recnd |
|
49 |
48
|
halfcld |
|
50 |
49
|
sincld |
|
51 |
|
2ne0 |
|
52 |
51
|
a1i |
|
53 |
10
|
sselda |
|
54 |
|
fourierdlem44 |
|
55 |
53 38 54
|
syl2anc |
|
56 |
47 50 52 55
|
mulne0d |
|
57 |
24 46 56
|
redivcld |
|
58 |
57 17
|
fmptd |
|
59 |
58
|
ffvelrnda |
|
60 |
40
|
feqmptd |
|
61 |
58
|
feqmptd |
|
62 |
20 41 59 60 61
|
offval2 |
|
63 |
18 62
|
eqtr4id |
|
64 |
63
|
oveq2d |
|
65 |
|
reelprrecn |
|
66 |
65
|
a1i |
|
67 |
26
|
recnd |
|
68 |
12
|
recnd |
|
69 |
68
|
adantr |
|
70 |
67 69
|
subcld |
|
71 |
|
ioossre |
|
72 |
71
|
a1i |
|
73 |
72
|
sselda |
|
74 |
73
|
recnd |
|
75 |
70 74 38
|
divcld |
|
76 |
75 16
|
fmptd |
|
77 |
74
|
halfcld |
|
78 |
77
|
sincld |
|
79 |
47 78
|
mulcld |
|
80 |
74 79 56
|
divcld |
|
81 |
80 17
|
fmptd |
|
82 |
|
ax-resscn |
|
83 |
82
|
a1i |
|
84 |
|
ssid |
|
85 |
84
|
a1i |
|
86 |
|
cncfss |
|
87 |
83 85 86
|
syl2anc |
|
88 |
38
|
nelrdva |
|
89 |
1 83
|
fssd |
|
90 |
|
ssid |
|
91 |
90
|
a1i |
|
92 |
|
ioossre |
|
93 |
92
|
a1i |
|
94 |
|
eqid |
|
95 |
94
|
tgioo2 |
|
96 |
94 95
|
dvres |
|
97 |
83 89 91 93 96
|
syl22anc |
|
98 |
|
ioontr |
|
99 |
98
|
reseq2i |
|
100 |
97 99
|
eqtrdi |
|
101 |
3
|
fourierdlem2 |
|
102 |
4 101
|
syl |
|
103 |
5 102
|
mpbid |
|
104 |
103
|
simpld |
|
105 |
|
elmapi |
|
106 |
104 105
|
syl |
|
107 |
|
elfzofz |
|
108 |
14 107
|
syl |
|
109 |
106 108
|
ffvelrnd |
|
110 |
109
|
rexrd |
|
111 |
|
fzofzp1 |
|
112 |
14 111
|
syl |
|
113 |
106 112
|
ffvelrnd |
|
114 |
113
|
rexrd |
|
115 |
|
pire |
|
116 |
115
|
a1i |
|
117 |
116
|
renegcld |
|
118 |
117 116 2 3 4 5 108 13
|
fourierdlem13 |
|
119 |
118
|
simprd |
|
120 |
118
|
simpld |
|
121 |
109 2
|
resubcld |
|
122 |
120 121
|
eqeltrd |
|
123 |
117 116 2 3 4 5 112 13
|
fourierdlem13 |
|
124 |
123
|
simpld |
|
125 |
113 2
|
resubcld |
|
126 |
124 125
|
eqeltrd |
|
127 |
122 126 7 8 9 15
|
fourierdlem10 |
|
128 |
127
|
simpld |
|
129 |
122 7 2 128
|
leadd2dd |
|
130 |
119 129
|
eqbrtrd |
|
131 |
127
|
simprd |
|
132 |
8 126 2 131
|
leadd2dd |
|
133 |
123
|
simprd |
|
134 |
132 133
|
breqtrrd |
|
135 |
|
ioossioo |
|
136 |
110 114 130 134 135
|
syl22anc |
|
137 |
136
|
resabs1d |
|
138 |
137
|
eqcomd |
|
139 |
14
|
ancli |
|
140 |
|
eleq1 |
|
141 |
140
|
anbi2d |
|
142 |
|
fveq2 |
|
143 |
|
oveq1 |
|
144 |
143
|
fveq2d |
|
145 |
142 144
|
oveq12d |
|
146 |
145
|
reseq2d |
|
147 |
145
|
oveq1d |
|
148 |
146 147
|
eleq12d |
|
149 |
141 148
|
imbi12d |
|
150 |
149 6
|
vtoclg |
|
151 |
14 139 150
|
sylc |
|
152 |
|
rescncf |
|
153 |
136 151 152
|
sylc |
|
154 |
138 153
|
eqeltrd |
|
155 |
100 154
|
eqeltrd |
|
156 |
1 2 7 8 88 155 12 16
|
fourierdlem59 |
|
157 |
87 156
|
sseldd |
|
158 |
|
iooretop |
|
159 |
158
|
a1i |
|
160 |
17 10 88 159
|
fourierdlem58 |
|
161 |
87 160
|
sseldd |
|
162 |
66 76 81 157 161
|
dvmulcncf |
|
163 |
64 162
|
eqeltrd |
|