Metamath Proof Explorer


Theorem fourierdlem72

Description: The derivative of O is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem72.f φ F :
fourierdlem72.xre φ X
fourierdlem72.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem72.m φ M
fourierdlem72.v φ V P M
fourierdlem72.dvcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
fourierdlem72.a φ A
fourierdlem72.b φ B
fourierdlem72.altb φ A < B
fourierdlem72.ab φ A B π π
fourierdlem72.n0 φ ¬ 0 A B
fourierdlem72.c φ C
fourierdlem72.q Q = i 0 M V i X
fourierdlem72.u φ U 0 ..^ M
fourierdlem72.abss φ A B Q U Q U + 1
fourierdlem72.h H = s A B F X + s C s
fourierdlem72.k K = s A B s 2 sin s 2
fourierdlem72.o O = s A B H s K s
Assertion fourierdlem72 φ O : A B cn

Proof

Step Hyp Ref Expression
1 fourierdlem72.f φ F :
2 fourierdlem72.xre φ X
3 fourierdlem72.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
4 fourierdlem72.m φ M
5 fourierdlem72.v φ V P M
6 fourierdlem72.dvcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
7 fourierdlem72.a φ A
8 fourierdlem72.b φ B
9 fourierdlem72.altb φ A < B
10 fourierdlem72.ab φ A B π π
11 fourierdlem72.n0 φ ¬ 0 A B
12 fourierdlem72.c φ C
13 fourierdlem72.q Q = i 0 M V i X
14 fourierdlem72.u φ U 0 ..^ M
15 fourierdlem72.abss φ A B Q U Q U + 1
16 fourierdlem72.h H = s A B F X + s C s
17 fourierdlem72.k K = s A B s 2 sin s 2
18 fourierdlem72.o O = s A B H s K s
19 ovex A B V
20 19 a1i φ A B V
21 1 adantr φ s A B F :
22 2 adantr φ s A B X
23 elioore s A B s
24 23 adantl φ s A B s
25 22 24 readdcld φ s A B X + s
26 21 25 ffvelrnd φ s A B F X + s
27 12 adantr φ s A B C
28 26 27 resubcld φ s A B F X + s C
29 ioossicc A B A B
30 29 sseli s A B s A B
31 30 ad2antlr φ s A B ¬ s 0 s A B
32 id s 0 s 0
33 32 necon1bi ¬ s 0 s = 0
34 33 eleq1d ¬ s 0 s A B 0 A B
35 34 adantl φ s A B ¬ s 0 s A B 0 A B
36 31 35 mpbid φ s A B ¬ s 0 0 A B
37 11 ad2antrr φ s A B ¬ s 0 ¬ 0 A B
38 36 37 condan φ s A B s 0
39 28 24 38 redivcld φ s A B F X + s C s
40 39 16 fmptd φ H : A B
41 40 ffvelrnda φ s A B H s
42 2re 2
43 42 a1i φ s A B 2
44 24 rehalfcld φ s A B s 2
45 44 resincld φ s A B sin s 2
46 43 45 remulcld φ s A B 2 sin s 2
47 2cnd φ s A B 2
48 24 recnd φ s A B s
49 48 halfcld φ s A B s 2
50 49 sincld φ s A B sin s 2
51 2ne0 2 0
52 51 a1i φ s A B 2 0
53 10 sselda φ s A B s π π
54 fourierdlem44 s π π s 0 sin s 2 0
55 53 38 54 syl2anc φ s A B sin s 2 0
56 47 50 52 55 mulne0d φ s A B 2 sin s 2 0
57 24 46 56 redivcld φ s A B s 2 sin s 2
58 57 17 fmptd φ K : A B
59 58 ffvelrnda φ s A B K s
60 40 feqmptd φ H = s A B H s
61 58 feqmptd φ K = s A B K s
62 20 41 59 60 61 offval2 φ H × f K = s A B H s K s
63 18 62 eqtr4id φ O = H × f K
64 63 oveq2d φ D O = D H × f K
65 reelprrecn
66 65 a1i φ
67 26 recnd φ s A B F X + s
68 12 recnd φ C
69 68 adantr φ s A B C
70 67 69 subcld φ s A B F X + s C
71 ioossre A B
72 71 a1i φ A B
73 72 sselda φ s A B s
74 73 recnd φ s A B s
75 70 74 38 divcld φ s A B F X + s C s
76 75 16 fmptd φ H : A B
77 74 halfcld φ s A B s 2
78 77 sincld φ s A B sin s 2
79 47 78 mulcld φ s A B 2 sin s 2
80 74 79 56 divcld φ s A B s 2 sin s 2
81 80 17 fmptd φ K : A B
82 ax-resscn
83 82 a1i φ
84 ssid
85 84 a1i φ
86 cncfss A B cn A B cn
87 83 85 86 syl2anc φ A B cn A B cn
88 38 nelrdva φ ¬ 0 A B
89 1 83 fssd φ F :
90 ssid
91 90 a1i φ
92 ioossre X + A X + B
93 92 a1i φ X + A X + B
94 eqid TopOpen fld = TopOpen fld
95 94 tgioo2 topGen ran . = TopOpen fld 𝑡
96 94 95 dvres F : X + A X + B D F X + A X + B = F int topGen ran . X + A X + B
97 83 89 91 93 96 syl22anc φ D F X + A X + B = F int topGen ran . X + A X + B
98 ioontr int topGen ran . X + A X + B = X + A X + B
99 98 reseq2i F int topGen ran . X + A X + B = F X + A X + B
100 97 99 eqtrdi φ D F X + A X + B = F X + A X + B
101 3 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
102 4 101 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
103 5 102 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
104 103 simpld φ V 0 M
105 elmapi V 0 M V : 0 M
106 104 105 syl φ V : 0 M
107 elfzofz U 0 ..^ M U 0 M
108 14 107 syl φ U 0 M
109 106 108 ffvelrnd φ V U
110 109 rexrd φ V U *
111 fzofzp1 U 0 ..^ M U + 1 0 M
112 14 111 syl φ U + 1 0 M
113 106 112 ffvelrnd φ V U + 1
114 113 rexrd φ V U + 1 *
115 pire π
116 115 a1i φ π
117 116 renegcld φ π
118 117 116 2 3 4 5 108 13 fourierdlem13 φ Q U = V U X V U = X + Q U
119 118 simprd φ V U = X + Q U
120 118 simpld φ Q U = V U X
121 109 2 resubcld φ V U X
122 120 121 eqeltrd φ Q U
123 117 116 2 3 4 5 112 13 fourierdlem13 φ Q U + 1 = V U + 1 X V U + 1 = X + Q U + 1
124 123 simpld φ Q U + 1 = V U + 1 X
125 113 2 resubcld φ V U + 1 X
126 124 125 eqeltrd φ Q U + 1
127 122 126 7 8 9 15 fourierdlem10 φ Q U A B Q U + 1
128 127 simpld φ Q U A
129 122 7 2 128 leadd2dd φ X + Q U X + A
130 119 129 eqbrtrd φ V U X + A
131 127 simprd φ B Q U + 1
132 8 126 2 131 leadd2dd φ X + B X + Q U + 1
133 123 simprd φ V U + 1 = X + Q U + 1
134 132 133 breqtrrd φ X + B V U + 1
135 ioossioo V U * V U + 1 * V U X + A X + B V U + 1 X + A X + B V U V U + 1
136 110 114 130 134 135 syl22anc φ X + A X + B V U V U + 1
137 136 resabs1d φ F V U V U + 1 X + A X + B = F X + A X + B
138 137 eqcomd φ F X + A X + B = F V U V U + 1 X + A X + B
139 14 ancli φ φ U 0 ..^ M
140 eleq1 i = U i 0 ..^ M U 0 ..^ M
141 140 anbi2d i = U φ i 0 ..^ M φ U 0 ..^ M
142 fveq2 i = U V i = V U
143 oveq1 i = U i + 1 = U + 1
144 143 fveq2d i = U V i + 1 = V U + 1
145 142 144 oveq12d i = U V i V i + 1 = V U V U + 1
146 145 reseq2d i = U F V i V i + 1 = F V U V U + 1
147 145 oveq1d i = U V i V i + 1 cn = V U V U + 1 cn
148 146 147 eleq12d i = U F V i V i + 1 : V i V i + 1 cn F V U V U + 1 : V U V U + 1 cn
149 141 148 imbi12d i = U φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn φ U 0 ..^ M F V U V U + 1 : V U V U + 1 cn
150 149 6 vtoclg U 0 ..^ M φ U 0 ..^ M F V U V U + 1 : V U V U + 1 cn
151 14 139 150 sylc φ F V U V U + 1 : V U V U + 1 cn
152 rescncf X + A X + B V U V U + 1 F V U V U + 1 : V U V U + 1 cn F V U V U + 1 X + A X + B : X + A X + B cn
153 136 151 152 sylc φ F V U V U + 1 X + A X + B : X + A X + B cn
154 138 153 eqeltrd φ F X + A X + B : X + A X + B cn
155 100 154 eqeltrd φ F X + A X + B : X + A X + B cn
156 1 2 7 8 88 155 12 16 fourierdlem59 φ H : A B cn
157 87 156 sseldd φ H : A B cn
158 iooretop A B topGen ran .
159 158 a1i φ A B topGen ran .
160 17 10 88 159 fourierdlem58 φ K : A B cn
161 87 160 sseldd φ K : A B cn
162 66 76 81 157 161 dvmulcncf φ H × f K : A B cn
163 64 162 eqeltrd φ O : A B cn