Metamath Proof Explorer


Theorem fourierdlem75

Description: Given a piecewise smooth function F , the derived function H has a limit at the lower bound of each interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem75.xre φ X
fourierdlem75.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem75.f φ F :
fourierdlem75.x φ X ran V
fourierdlem75.y φ Y F X +∞ lim X
fourierdlem75.w φ W
fourierdlem75.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem75.m φ M
fourierdlem75.v φ V P M
fourierdlem75.r φ i 0 ..^ M R F V i V i + 1 lim V i
fourierdlem75.q Q = i 0 M V i X
fourierdlem75.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
fourierdlem75.g G = D F
fourierdlem75.gcn φ i 0 ..^ M G V i V i + 1 : V i V i + 1
fourierdlem75.e φ E G X +∞ lim X
fourierdlem75.a A = if V i = X E R if V i < X W Y Q i
Assertion fourierdlem75 φ i 0 ..^ M A H Q i Q i + 1 lim Q i

Proof

Step Hyp Ref Expression
1 fourierdlem75.xre φ X
2 fourierdlem75.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
3 fourierdlem75.f φ F :
4 fourierdlem75.x φ X ran V
5 fourierdlem75.y φ Y F X +∞ lim X
6 fourierdlem75.w φ W
7 fourierdlem75.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
8 fourierdlem75.m φ M
9 fourierdlem75.v φ V P M
10 fourierdlem75.r φ i 0 ..^ M R F V i V i + 1 lim V i
11 fourierdlem75.q Q = i 0 M V i X
12 fourierdlem75.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
13 fourierdlem75.g G = D F
14 fourierdlem75.gcn φ i 0 ..^ M G V i V i + 1 : V i V i + 1
15 fourierdlem75.e φ E G X +∞ lim X
16 fourierdlem75.a A = if V i = X E R if V i < X W Y Q i
17 1 ad2antrr φ i 0 ..^ M V i = X X
18 2 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
19 8 18 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
20 9 19 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
21 20 simpld φ V 0 M
22 elmapi V 0 M V : 0 M
23 21 22 syl φ V : 0 M
24 23 adantr φ i 0 ..^ M V : 0 M
25 fzofzp1 i 0 ..^ M i + 1 0 M
26 25 adantl φ i 0 ..^ M i + 1 0 M
27 24 26 ffvelrnd φ i 0 ..^ M V i + 1
28 27 adantr φ i 0 ..^ M V i = X V i + 1
29 eqcom V i = X X = V i
30 29 biimpi V i = X X = V i
31 30 adantl φ i 0 ..^ M V i = X X = V i
32 20 simprrd φ i 0 ..^ M V i < V i + 1
33 32 r19.21bi φ i 0 ..^ M V i < V i + 1
34 33 adantr φ i 0 ..^ M V i = X V i < V i + 1
35 31 34 eqbrtrd φ i 0 ..^ M V i = X X < V i + 1
36 3 adantr φ i 0 ..^ M F :
37 ioossre X V i + 1
38 37 a1i φ i 0 ..^ M X V i + 1
39 36 38 fssresd φ i 0 ..^ M F X V i + 1 : X V i + 1
40 39 adantr φ i 0 ..^ M V i = X F X V i + 1 : X V i + 1
41 limcresi F X +∞ lim X F X +∞ X V i + 1 lim X
42 41 5 sselid φ Y F X +∞ X V i + 1 lim X
43 42 adantr φ i 0 ..^ M Y F X +∞ X V i + 1 lim X
44 pnfxr +∞ *
45 44 a1i φ i 0 ..^ M +∞ *
46 27 rexrd φ i 0 ..^ M V i + 1 *
47 27 ltpnfd φ i 0 ..^ M V i + 1 < +∞
48 46 45 47 xrltled φ i 0 ..^ M V i + 1 +∞
49 iooss2 +∞ * V i + 1 +∞ X V i + 1 X +∞
50 45 48 49 syl2anc φ i 0 ..^ M X V i + 1 X +∞
51 50 resabs1d φ i 0 ..^ M F X +∞ X V i + 1 = F X V i + 1
52 51 oveq1d φ i 0 ..^ M F X +∞ X V i + 1 lim X = F X V i + 1 lim X
53 43 52 eleqtrd φ i 0 ..^ M Y F X V i + 1 lim X
54 53 adantr φ i 0 ..^ M V i = X Y F X V i + 1 lim X
55 eqid D F X V i + 1 = D F X V i + 1
56 ax-resscn
57 56 a1i φ
58 3 57 fssd φ F :
59 ssid
60 59 a1i φ
61 37 a1i φ X V i + 1
62 eqid TopOpen fld = TopOpen fld
63 62 tgioo2 topGen ran . = TopOpen fld 𝑡
64 62 63 dvres F : X V i + 1 D F X V i + 1 = F int topGen ran . X V i + 1
65 57 58 60 61 64 syl22anc φ D F X V i + 1 = F int topGen ran . X V i + 1
66 13 eqcomi D F = G
67 ioontr int topGen ran . X V i + 1 = X V i + 1
68 66 67 reseq12i F int topGen ran . X V i + 1 = G X V i + 1
69 65 68 eqtrdi φ D F X V i + 1 = G X V i + 1
70 69 adantr φ V i = X D F X V i + 1 = G X V i + 1
71 70 dmeqd φ V i = X dom F X V i + 1 = dom G X V i + 1
72 71 adantlr φ i 0 ..^ M V i = X dom F X V i + 1 = dom G X V i + 1
73 14 adantr φ i 0 ..^ M V i = X G V i V i + 1 : V i V i + 1
74 oveq1 V i = X V i V i + 1 = X V i + 1
75 74 reseq2d V i = X G V i V i + 1 = G X V i + 1
76 75 feq1d V i = X G V i V i + 1 : V i V i + 1 G X V i + 1 : V i V i + 1
77 76 adantl φ i 0 ..^ M V i = X G V i V i + 1 : V i V i + 1 G X V i + 1 : V i V i + 1
78 73 77 mpbid φ i 0 ..^ M V i = X G X V i + 1 : V i V i + 1
79 74 adantl φ i 0 ..^ M V i = X V i V i + 1 = X V i + 1
80 79 feq2d φ i 0 ..^ M V i = X G X V i + 1 : V i V i + 1 G X V i + 1 : X V i + 1
81 78 80 mpbid φ i 0 ..^ M V i = X G X V i + 1 : X V i + 1
82 fdm G X V i + 1 : X V i + 1 dom G X V i + 1 = X V i + 1
83 81 82 syl φ i 0 ..^ M V i = X dom G X V i + 1 = X V i + 1
84 72 83 eqtrd φ i 0 ..^ M V i = X dom F X V i + 1 = X V i + 1
85 limcresi G X +∞ lim X G X +∞ X V i + 1 lim X
86 85 15 sselid φ E G X +∞ X V i + 1 lim X
87 86 adantr φ i 0 ..^ M E G X +∞ X V i + 1 lim X
88 50 resabs1d φ i 0 ..^ M G X +∞ X V i + 1 = G X V i + 1
89 69 adantr φ i 0 ..^ M D F X V i + 1 = G X V i + 1
90 88 89 eqtr4d φ i 0 ..^ M G X +∞ X V i + 1 = D F X V i + 1
91 90 oveq1d φ i 0 ..^ M G X +∞ X V i + 1 lim X = F X V i + 1 lim X
92 87 91 eleqtrd φ i 0 ..^ M E F X V i + 1 lim X
93 92 adantr φ i 0 ..^ M V i = X E F X V i + 1 lim X
94 eqid s 0 V i + 1 X F X V i + 1 X + s Y s = s 0 V i + 1 X F X V i + 1 X + s Y s
95 oveq2 x = s X + x = X + s
96 95 fveq2d x = s F X V i + 1 X + x = F X V i + 1 X + s
97 96 oveq1d x = s F X V i + 1 X + x Y = F X V i + 1 X + s Y
98 97 cbvmptv x 0 V i + 1 X F X V i + 1 X + x Y = s 0 V i + 1 X F X V i + 1 X + s Y
99 id x = s x = s
100 99 cbvmptv x 0 V i + 1 X x = s 0 V i + 1 X s
101 17 28 35 40 54 55 84 93 94 98 100 fourierdlem61 φ i 0 ..^ M V i = X E s 0 V i + 1 X F X V i + 1 X + s Y s lim 0
102 iftrue V i = X if V i = X E R if V i < X W Y Q i = E
103 16 102 eqtrid V i = X A = E
104 103 adantl φ i 0 ..^ M V i = X A = E
105 7 reseq1i H Q i Q i + 1 = s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1
106 105 a1i φ i 0 ..^ M V i = X H Q i Q i + 1 = s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1
107 ioossicc Q i Q i + 1 Q i Q i + 1
108 pire π
109 108 renegcli π
110 109 rexri π *
111 110 a1i φ i 0 ..^ M π *
112 108 rexri π *
113 112 a1i φ i 0 ..^ M π *
114 109 a1i φ i 0 M π
115 108 a1i φ i 0 M π
116 109 a1i φ π
117 116 1 readdcld φ - π + X
118 108 a1i φ π
119 118 1 readdcld φ π + X
120 117 119 iccssred φ - π + X π + X
121 120 adantr φ i 0 M - π + X π + X
122 2 8 9 fourierdlem15 φ V : 0 M - π + X π + X
123 122 ffvelrnda φ i 0 M V i - π + X π + X
124 121 123 sseldd φ i 0 M V i
125 1 adantr φ i 0 M X
126 124 125 resubcld φ i 0 M V i X
127 116 recnd φ π
128 1 recnd φ X
129 127 128 pncand φ π + X - X = π
130 129 eqcomd φ π = π + X - X
131 130 adantr φ i 0 M π = π + X - X
132 117 adantr φ i 0 M - π + X
133 119 adantr φ i 0 M π + X
134 elicc2 - π + X π + X V i - π + X π + X V i - π + X V i V i π + X
135 132 133 134 syl2anc φ i 0 M V i - π + X π + X V i - π + X V i V i π + X
136 123 135 mpbid φ i 0 M V i - π + X V i V i π + X
137 136 simp2d φ i 0 M - π + X V i
138 132 124 125 137 lesub1dd φ i 0 M π + X - X V i X
139 131 138 eqbrtrd φ i 0 M π V i X
140 136 simp3d φ i 0 M V i π + X
141 124 133 125 140 lesub1dd φ i 0 M V i X π + X - X
142 115 recnd φ i 0 M π
143 128 adantr φ i 0 M X
144 142 143 pncand φ i 0 M π + X - X = π
145 141 144 breqtrd φ i 0 M V i X π
146 114 115 126 139 145 eliccd φ i 0 M V i X π π
147 146 11 fmptd φ Q : 0 M π π
148 147 adantr φ i 0 ..^ M Q : 0 M π π
149 simpr φ i 0 ..^ M i 0 ..^ M
150 111 113 148 149 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 π π
151 107 150 sstrid φ i 0 ..^ M Q i Q i + 1 π π
152 151 resmptd φ i 0 ..^ M s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1 = s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
153 152 adantr φ i 0 ..^ M V i = X s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1 = s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
154 elfzofz i 0 ..^ M i 0 M
155 simpr φ i 0 M i 0 M
156 11 fvmpt2 i 0 M V i X π π Q i = V i X
157 155 146 156 syl2anc φ i 0 M Q i = V i X
158 157 adantr φ i 0 M V i = X Q i = V i X
159 oveq1 V i = X V i X = X X
160 159 adantl φ i 0 M V i = X V i X = X X
161 128 ad2antrr φ i 0 M V i = X X
162 161 subidd φ i 0 M V i = X X X = 0
163 158 160 162 3eqtrd φ i 0 M V i = X Q i = 0
164 154 163 sylanl2 φ i 0 ..^ M V i = X Q i = 0
165 fveq2 i = j V i = V j
166 165 oveq1d i = j V i X = V j X
167 166 cbvmptv i 0 M V i X = j 0 M V j X
168 11 167 eqtri Q = j 0 M V j X
169 168 a1i φ i 0 ..^ M Q = j 0 M V j X
170 fveq2 j = i + 1 V j = V i + 1
171 170 oveq1d j = i + 1 V j X = V i + 1 X
172 171 adantl φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
173 1 adantr φ i 0 ..^ M X
174 27 173 resubcld φ i 0 ..^ M V i + 1 X
175 169 172 26 174 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
176 175 adantr φ i 0 ..^ M V i = X Q i + 1 = V i + 1 X
177 164 176 oveq12d φ i 0 ..^ M V i = X Q i Q i + 1 = 0 V i + 1 X
178 simplr φ i 0 ..^ M s Q i Q i + 1 s = 0 s Q i Q i + 1
179 8 adantr φ s = 0 M
180 116 118 1 2 12 8 9 11 fourierdlem14 φ Q O M
181 180 adantr φ s = 0 Q O M
182 simpr φ s = 0 s = 0
183 ffn V : 0 M - π + X π + X V Fn 0 M
184 fvelrnb V Fn 0 M X ran V i 0 M V i = X
185 122 183 184 3syl φ X ran V i 0 M V i = X
186 4 185 mpbid φ i 0 M V i = X
187 163 ex φ i 0 M V i = X Q i = 0
188 187 reximdva φ i 0 M V i = X i 0 M Q i = 0
189 186 188 mpd φ i 0 M Q i = 0
190 126 11 fmptd φ Q : 0 M
191 ffn Q : 0 M Q Fn 0 M
192 fvelrnb Q Fn 0 M 0 ran Q i 0 M Q i = 0
193 190 191 192 3syl φ 0 ran Q i 0 M Q i = 0
194 189 193 mpbird φ 0 ran Q
195 194 adantr φ s = 0 0 ran Q
196 182 195 eqeltrd φ s = 0 s ran Q
197 12 179 181 196 fourierdlem12 φ s = 0 i 0 ..^ M ¬ s Q i Q i + 1
198 197 an32s φ i 0 ..^ M s = 0 ¬ s Q i Q i + 1
199 198 adantlr φ i 0 ..^ M s Q i Q i + 1 s = 0 ¬ s Q i Q i + 1
200 178 199 pm2.65da φ i 0 ..^ M s Q i Q i + 1 ¬ s = 0
201 200 adantlr φ i 0 ..^ M V i = X s Q i Q i + 1 ¬ s = 0
202 201 iffalsed φ i 0 ..^ M V i = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
203 164 eqcomd φ i 0 ..^ M V i = X 0 = Q i
204 203 adantr φ i 0 ..^ M V i = X s Q i Q i + 1 0 = Q i
205 elioo3g s Q i Q i + 1 Q i * Q i + 1 * s * Q i < s s < Q i + 1
206 205 biimpi s Q i Q i + 1 Q i * Q i + 1 * s * Q i < s s < Q i + 1
207 206 simprld s Q i Q i + 1 Q i < s
208 207 adantl φ i 0 ..^ M V i = X s Q i Q i + 1 Q i < s
209 204 208 eqbrtrd φ i 0 ..^ M V i = X s Q i Q i + 1 0 < s
210 209 iftrued φ i 0 ..^ M V i = X s Q i Q i + 1 if 0 < s Y W = Y
211 210 oveq2d φ i 0 ..^ M V i = X s Q i Q i + 1 F X + s if 0 < s Y W = F X + s Y
212 211 oveq1d φ i 0 ..^ M V i = X s Q i Q i + 1 F X + s if 0 < s Y W s = F X + s Y s
213 1 rexrd φ X *
214 213 ad3antrrr φ i 0 ..^ M V i = X s Q i Q i + 1 X *
215 46 ad2antrr φ i 0 ..^ M V i = X s Q i Q i + 1 V i + 1 *
216 173 ad2antrr φ i 0 ..^ M V i = X s Q i Q i + 1 X
217 elioore s Q i Q i + 1 s
218 217 adantl φ i 0 ..^ M V i = X s Q i Q i + 1 s
219 216 218 readdcld φ i 0 ..^ M V i = X s Q i Q i + 1 X + s
220 218 209 elrpd φ i 0 ..^ M V i = X s Q i Q i + 1 s +
221 216 220 ltaddrpd φ i 0 ..^ M V i = X s Q i Q i + 1 X < X + s
222 217 adantl φ i 0 ..^ M s Q i Q i + 1 s
223 190 adantr φ i 0 ..^ M Q : 0 M
224 223 26 ffvelrnd φ i 0 ..^ M Q i + 1
225 224 adantr φ i 0 ..^ M s Q i Q i + 1 Q i + 1
226 1 ad2antrr φ i 0 ..^ M s Q i Q i + 1 X
227 206 simprrd s Q i Q i + 1 s < Q i + 1
228 227 adantl φ i 0 ..^ M s Q i Q i + 1 s < Q i + 1
229 222 225 226 228 ltadd2dd φ i 0 ..^ M s Q i Q i + 1 X + s < X + Q i + 1
230 175 oveq2d φ i 0 ..^ M X + Q i + 1 = X + V i + 1 - X
231 128 adantr φ i 0 ..^ M X
232 27 recnd φ i 0 ..^ M V i + 1
233 231 232 pncan3d φ i 0 ..^ M X + V i + 1 - X = V i + 1
234 230 233 eqtrd φ i 0 ..^ M X + Q i + 1 = V i + 1
235 234 adantr φ i 0 ..^ M s Q i Q i + 1 X + Q i + 1 = V i + 1
236 229 235 breqtrd φ i 0 ..^ M s Q i Q i + 1 X + s < V i + 1
237 236 adantlr φ i 0 ..^ M V i = X s Q i Q i + 1 X + s < V i + 1
238 214 215 219 221 237 eliood φ i 0 ..^ M V i = X s Q i Q i + 1 X + s X V i + 1
239 fvres X + s X V i + 1 F X V i + 1 X + s = F X + s
240 238 239 syl φ i 0 ..^ M V i = X s Q i Q i + 1 F X V i + 1 X + s = F X + s
241 240 eqcomd φ i 0 ..^ M V i = X s Q i Q i + 1 F X + s = F X V i + 1 X + s
242 241 oveq1d φ i 0 ..^ M V i = X s Q i Q i + 1 F X + s Y = F X V i + 1 X + s Y
243 242 oveq1d φ i 0 ..^ M V i = X s Q i Q i + 1 F X + s Y s = F X V i + 1 X + s Y s
244 202 212 243 3eqtrd φ i 0 ..^ M V i = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F X V i + 1 X + s Y s
245 177 244 mpteq12dva φ i 0 ..^ M V i = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = s 0 V i + 1 X F X V i + 1 X + s Y s
246 106 153 245 3eqtrd φ i 0 ..^ M V i = X H Q i Q i + 1 = s 0 V i + 1 X F X V i + 1 X + s Y s
247 246 164 oveq12d φ i 0 ..^ M V i = X H Q i Q i + 1 lim Q i = s 0 V i + 1 X F X V i + 1 X + s Y s lim 0
248 101 104 247 3eltr4d φ i 0 ..^ M V i = X A H Q i Q i + 1 lim Q i
249 eqid s Q i Q i + 1 F X + s if 0 < s Y W = s Q i Q i + 1 F X + s if 0 < s Y W
250 eqid s Q i Q i + 1 s = s Q i Q i + 1 s
251 eqid s Q i Q i + 1 F X + s if 0 < s Y W s = s Q i Q i + 1 F X + s if 0 < s Y W s
252 3 adantr φ s Q i Q i + 1 F :
253 1 adantr φ s Q i Q i + 1 X
254 217 adantl φ s Q i Q i + 1 s
255 253 254 readdcld φ s Q i Q i + 1 X + s
256 252 255 ffvelrnd φ s Q i Q i + 1 F X + s
257 256 recnd φ s Q i Q i + 1 F X + s
258 257 adantlr φ i 0 ..^ M s Q i Q i + 1 F X + s
259 258 3adantl3 φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 F X + s
260 limccl F X +∞ lim X
261 260 5 sselid φ Y
262 6 recnd φ W
263 261 262 ifcld φ if 0 < s Y W
264 263 adantr φ s Q i Q i + 1 if 0 < s Y W
265 264 3ad2antl1 φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 if 0 < s Y W
266 259 265 subcld φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 F X + s if 0 < s Y W
267 217 recnd s Q i Q i + 1 s
268 267 adantl φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 s
269 velsn s 0 s = 0
270 200 269 sylnibr φ i 0 ..^ M s Q i Q i + 1 ¬ s 0
271 270 3adantl3 φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 ¬ s 0
272 268 271 eldifd φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 s 0
273 eqid s Q i Q i + 1 F X + s = s Q i Q i + 1 F X + s
274 eqid s Q i Q i + 1 W = s Q i Q i + 1 W
275 eqid s Q i Q i + 1 F X + s W = s Q i Q i + 1 F X + s W
276 262 ad2antrr φ i 0 ..^ M s Q i Q i + 1 W
277 ioossre Q i Q i + 1
278 277 a1i φ i 0 ..^ M Q i Q i + 1
279 154 124 sylan2 φ i 0 ..^ M V i
280 279 rexrd φ i 0 ..^ M V i *
281 280 adantr φ i 0 ..^ M s Q i Q i + 1 V i *
282 46 adantr φ i 0 ..^ M s Q i Q i + 1 V i + 1 *
283 255 adantlr φ i 0 ..^ M s Q i Q i + 1 X + s
284 iccssre π π π π
285 109 108 284 mp2an π π
286 285 56 sstri π π
287 157 146 eqeltrd φ i 0 M Q i π π
288 154 287 sylan2 φ i 0 ..^ M Q i π π
289 286 288 sselid φ i 0 ..^ M Q i
290 231 289 addcomd φ i 0 ..^ M X + Q i = Q i + X
291 154 adantl φ i 0 ..^ M i 0 M
292 154 126 sylan2 φ i 0 ..^ M V i X
293 11 fvmpt2 i 0 M V i X Q i = V i X
294 291 292 293 syl2anc φ i 0 ..^ M Q i = V i X
295 294 oveq1d φ i 0 ..^ M Q i + X = V i - X + X
296 279 recnd φ i 0 ..^ M V i
297 296 231 npcand φ i 0 ..^ M V i - X + X = V i
298 290 295 297 3eqtrrd φ i 0 ..^ M V i = X + Q i
299 298 adantr φ i 0 ..^ M s Q i Q i + 1 V i = X + Q i
300 294 292 eqeltrd φ i 0 ..^ M Q i
301 300 adantr φ i 0 ..^ M s Q i Q i + 1 Q i
302 207 adantl φ i 0 ..^ M s Q i Q i + 1 Q i < s
303 301 222 226 302 ltadd2dd φ i 0 ..^ M s Q i Q i + 1 X + Q i < X + s
304 299 303 eqbrtrd φ i 0 ..^ M s Q i Q i + 1 V i < X + s
305 281 282 283 304 236 eliood φ i 0 ..^ M s Q i Q i + 1 X + s V i V i + 1
306 ioossre V i V i + 1
307 306 a1i φ i 0 ..^ M V i V i + 1
308 301 302 gtned φ i 0 ..^ M s Q i Q i + 1 s Q i
309 298 oveq2d φ i 0 ..^ M F V i V i + 1 lim V i = F V i V i + 1 lim X + Q i
310 10 309 eleqtrd φ i 0 ..^ M R F V i V i + 1 lim X + Q i
311 36 173 278 273 305 307 308 310 289 fourierdlem53 φ i 0 ..^ M R s Q i Q i + 1 F X + s lim Q i
312 ioosscn Q i Q i + 1
313 312 a1i φ i 0 ..^ M Q i Q i + 1
314 262 adantr φ i 0 ..^ M W
315 274 313 314 289 constlimc φ i 0 ..^ M W s Q i Q i + 1 W lim Q i
316 273 274 275 258 276 311 315 sublimc φ i 0 ..^ M R W s Q i Q i + 1 F X + s W lim Q i
317 316 adantr φ i 0 ..^ M V i < X R W s Q i Q i + 1 F X + s W lim Q i
318 iftrue V i < X if V i < X W Y = W
319 318 oveq2d V i < X R if V i < X W Y = R W
320 319 adantl φ i 0 ..^ M V i < X R if V i < X W Y = R W
321 217 adantl φ i 0 ..^ M V i < X s Q i Q i + 1 s
322 0red φ i 0 ..^ M V i < X s Q i Q i + 1 0
323 224 ad2antrr φ i 0 ..^ M V i < X s Q i Q i + 1 Q i + 1
324 227 adantl φ i 0 ..^ M V i < X s Q i Q i + 1 s < Q i + 1
325 175 adantr φ i 0 ..^ M V i < X Q i + 1 = V i + 1 X
326 280 ad2antrr φ i 0 ..^ M V i < X ¬ V i + 1 X V i *
327 46 ad2antrr φ i 0 ..^ M V i < X ¬ V i + 1 X V i + 1 *
328 173 ad2antrr φ i 0 ..^ M V i < X ¬ V i + 1 X X
329 simplr φ i 0 ..^ M V i < X ¬ V i + 1 X V i < X
330 simpr φ i 0 ..^ M ¬ V i + 1 X ¬ V i + 1 X
331 1 ad2antrr φ i 0 ..^ M ¬ V i + 1 X X
332 27 adantr φ i 0 ..^ M ¬ V i + 1 X V i + 1
333 331 332 ltnled φ i 0 ..^ M ¬ V i + 1 X X < V i + 1 ¬ V i + 1 X
334 330 333 mpbird φ i 0 ..^ M ¬ V i + 1 X X < V i + 1
335 334 adantlr φ i 0 ..^ M V i < X ¬ V i + 1 X X < V i + 1
336 326 327 328 329 335 eliood φ i 0 ..^ M V i < X ¬ V i + 1 X X V i V i + 1
337 2 8 9 4 fourierdlem12 φ i 0 ..^ M ¬ X V i V i + 1
338 337 ad2antrr φ i 0 ..^ M V i < X ¬ V i + 1 X ¬ X V i V i + 1
339 336 338 condan φ i 0 ..^ M V i < X V i + 1 X
340 27 adantr φ i 0 ..^ M V i < X V i + 1
341 1 ad2antrr φ i 0 ..^ M V i < X X
342 340 341 suble0d φ i 0 ..^ M V i < X V i + 1 X 0 V i + 1 X
343 339 342 mpbird φ i 0 ..^ M V i < X V i + 1 X 0
344 325 343 eqbrtrd φ i 0 ..^ M V i < X Q i + 1 0
345 344 adantr φ i 0 ..^ M V i < X s Q i Q i + 1 Q i + 1 0
346 321 323 322 324 345 ltletrd φ i 0 ..^ M V i < X s Q i Q i + 1 s < 0
347 321 322 346 ltnsymd φ i 0 ..^ M V i < X s Q i Q i + 1 ¬ 0 < s
348 347 iffalsed φ i 0 ..^ M V i < X s Q i Q i + 1 if 0 < s Y W = W
349 348 oveq2d φ i 0 ..^ M V i < X s Q i Q i + 1 F X + s if 0 < s Y W = F X + s W
350 349 mpteq2dva φ i 0 ..^ M V i < X s Q i Q i + 1 F X + s if 0 < s Y W = s Q i Q i + 1 F X + s W
351 350 oveq1d φ i 0 ..^ M V i < X s Q i Q i + 1 F X + s if 0 < s Y W lim Q i = s Q i Q i + 1 F X + s W lim Q i
352 317 320 351 3eltr4d φ i 0 ..^ M V i < X R if V i < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i
353 352 3adantl3 φ i 0 ..^ M ¬ V i = X V i < X R if V i < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i
354 eqid s Q i Q i + 1 Y = s Q i Q i + 1 Y
355 eqid s Q i Q i + 1 F X + s Y = s Q i Q i + 1 F X + s Y
356 261 ad2antrr φ i 0 ..^ M s Q i Q i + 1 Y
357 261 adantr φ i 0 ..^ M Y
358 354 313 357 289 constlimc φ i 0 ..^ M Y s Q i Q i + 1 Y lim Q i
359 273 354 355 258 356 311 358 sublimc φ i 0 ..^ M R Y s Q i Q i + 1 F X + s Y lim Q i
360 359 adantr φ i 0 ..^ M ¬ V i < X R Y s Q i Q i + 1 F X + s Y lim Q i
361 iffalse ¬ V i < X if V i < X W Y = Y
362 361 oveq2d ¬ V i < X R if V i < X W Y = R Y
363 362 adantl φ i 0 ..^ M ¬ V i < X R if V i < X W Y = R Y
364 0red φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 0
365 300 ad2antrr φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 Q i
366 217 adantl φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 s
367 1 ad2antrr φ i 0 ..^ M ¬ V i < X X
368 279 adantr φ i 0 ..^ M ¬ V i < X V i
369 simpr φ i 0 ..^ M ¬ V i < X ¬ V i < X
370 367 368 369 nltled φ i 0 ..^ M ¬ V i < X X V i
371 368 367 subge0d φ i 0 ..^ M ¬ V i < X 0 V i X X V i
372 370 371 mpbird φ i 0 ..^ M ¬ V i < X 0 V i X
373 294 eqcomd φ i 0 ..^ M V i X = Q i
374 373 adantr φ i 0 ..^ M ¬ V i < X V i X = Q i
375 372 374 breqtrd φ i 0 ..^ M ¬ V i < X 0 Q i
376 375 adantr φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 0 Q i
377 207 adantl φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 Q i < s
378 364 365 366 376 377 lelttrd φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 0 < s
379 378 iftrued φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 if 0 < s Y W = Y
380 379 oveq2d φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 F X + s if 0 < s Y W = F X + s Y
381 380 mpteq2dva φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 F X + s if 0 < s Y W = s Q i Q i + 1 F X + s Y
382 381 oveq1d φ i 0 ..^ M ¬ V i < X s Q i Q i + 1 F X + s if 0 < s Y W lim Q i = s Q i Q i + 1 F X + s Y lim Q i
383 360 363 382 3eltr4d φ i 0 ..^ M ¬ V i < X R if V i < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i
384 383 3adantl3 φ i 0 ..^ M ¬ V i = X ¬ V i < X R if V i < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i
385 353 384 pm2.61dan φ i 0 ..^ M ¬ V i = X R if V i < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i
386 313 250 289 idlimc φ i 0 ..^ M Q i s Q i Q i + 1 s lim Q i
387 386 3adant3 φ i 0 ..^ M ¬ V i = X Q i s Q i Q i + 1 s lim Q i
388 294 3adant3 φ i 0 ..^ M ¬ V i = X Q i = V i X
389 296 3adant3 φ i 0 ..^ M ¬ V i = X V i
390 231 3adant3 φ i 0 ..^ M ¬ V i = X X
391 neqne ¬ V i = X V i X
392 391 3ad2ant3 φ i 0 ..^ M ¬ V i = X V i X
393 389 390 392 subne0d φ i 0 ..^ M ¬ V i = X V i X 0
394 388 393 eqnetrd φ i 0 ..^ M ¬ V i = X Q i 0
395 200 3adantl3 φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 ¬ s = 0
396 395 neqned φ i 0 ..^ M ¬ V i = X s Q i Q i + 1 s 0
397 249 250 251 266 272 385 387 394 396 divlimc φ i 0 ..^ M ¬ V i = X R if V i < X W Y Q i s Q i Q i + 1 F X + s if 0 < s Y W s lim Q i
398 iffalse ¬ V i = X if V i = X E R if V i < X W Y Q i = R if V i < X W Y Q i
399 16 398 eqtrid ¬ V i = X A = R if V i < X W Y Q i
400 399 3ad2ant3 φ i 0 ..^ M ¬ V i = X A = R if V i < X W Y Q i
401 ioossre X +∞
402 401 a1i φ X +∞
403 3 402 fssresd φ F X +∞ : X +∞
404 401 57 sstrid φ X +∞
405 44 a1i φ +∞ *
406 1 ltpnfd φ X < +∞
407 62 405 1 406 lptioo1cn φ X limPt TopOpen fld X +∞
408 403 404 407 5 limcrecl φ Y
409 3 1 408 6 7 fourierdlem9 φ H : π π
410 409 adantr φ i 0 ..^ M H : π π
411 410 151 feqresmpt φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 H s
412 151 sselda φ i 0 ..^ M s Q i Q i + 1 s π π
413 0cnd φ i 0 ..^ M s Q i Q i + 1 0
414 263 ad2antrr φ i 0 ..^ M s Q i Q i + 1 if 0 < s Y W
415 258 414 subcld φ i 0 ..^ M s Q i Q i + 1 F X + s if 0 < s Y W
416 267 adantl φ i 0 ..^ M s Q i Q i + 1 s
417 200 neqned φ i 0 ..^ M s Q i Q i + 1 s 0
418 415 416 417 divcld φ i 0 ..^ M s Q i Q i + 1 F X + s if 0 < s Y W s
419 413 418 ifcld φ i 0 ..^ M s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
420 7 fvmpt2 s π π if s = 0 0 F X + s if 0 < s Y W s H s = if s = 0 0 F X + s if 0 < s Y W s
421 412 419 420 syl2anc φ i 0 ..^ M s Q i Q i + 1 H s = if s = 0 0 F X + s if 0 < s Y W s
422 200 iffalsed φ i 0 ..^ M s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
423 421 422 eqtrd φ i 0 ..^ M s Q i Q i + 1 H s = F X + s if 0 < s Y W s
424 423 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 H s = s Q i Q i + 1 F X + s if 0 < s Y W s
425 411 424 eqtrd φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 F X + s if 0 < s Y W s
426 425 3adant3 φ i 0 ..^ M ¬ V i = X H Q i Q i + 1 = s Q i Q i + 1 F X + s if 0 < s Y W s
427 426 oveq1d φ i 0 ..^ M ¬ V i = X H Q i Q i + 1 lim Q i = s Q i Q i + 1 F X + s if 0 < s Y W s lim Q i
428 397 400 427 3eltr4d φ i 0 ..^ M ¬ V i = X A H Q i Q i + 1 lim Q i
429 428 3expa φ i 0 ..^ M ¬ V i = X A H Q i Q i + 1 lim Q i
430 248 429 pm2.61dan φ i 0 ..^ M A H Q i Q i + 1 lim Q i