Metamath Proof Explorer


Theorem fourierdlem77

Description: If H is bounded, then U is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem77.f φ F :
fourierdlem77.x φ X
fourierdlem77.y φ Y
fourierdlem77.w φ W
fourierdlem77.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem77.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem77.u U = s π π H s K s
fourierdlem77.bd φ a s π π H s a
Assertion fourierdlem77 φ b + s π π U s b

Proof

Step Hyp Ref Expression
1 fourierdlem77.f φ F :
2 fourierdlem77.x φ X
3 fourierdlem77.y φ Y
4 fourierdlem77.w φ W
5 fourierdlem77.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
6 fourierdlem77.k K = s π π if s = 0 1 s 2 sin s 2
7 fourierdlem77.u U = s π π H s K s
8 fourierdlem77.bd φ a s π π H s a
9 pire π
10 9 renegcli π
11 10 a1i π
12 9 a1i π
13 pirp π +
14 neglt π + π < π
15 13 14 ax-mp π < π
16 10 9 15 ltleii π π
17 16 a1i π π
18 6 fourierdlem62 K : π π cn
19 18 a1i K : π π cn
20 11 12 17 19 evthiccabs c π π s π π K s K c x π π y π π K x K y
21 20 mptru c π π s π π K s K c x π π y π π K x K y
22 21 simpli c π π s π π K s K c
23 22 a1i φ a s π π H s a c π π s π π K s K c
24 simpl a c π π a
25 6 fourierdlem43 K : π π
26 25 ffvelrni c π π K c
27 26 adantl a c π π K c
28 24 27 remulcld a c π π a K c
29 28 recnd a c π π a K c
30 29 abscld a c π π a K c
31 29 absge0d a c π π 0 a K c
32 30 31 ge0p1rpd a c π π a K c + 1 +
33 32 3ad2antl2 φ a s π π H s a c π π a K c + 1 +
34 33 3adant3 φ a s π π H s a c π π s π π K s K c a K c + 1 +
35 nfv s φ
36 nfv s a
37 nfra1 s s π π H s a
38 35 36 37 nf3an s φ a s π π H s a
39 nfv s c π π
40 nfra1 s s π π K s K c
41 38 39 40 nf3an s φ a s π π H s a c π π s π π K s K c
42 simpl11 φ a s π π H s a c π π s π π K s K c s π π φ
43 simpl12 φ a s π π H s a c π π s π π K s K c s π π a
44 42 43 jca φ a s π π H s a c π π s π π K s K c s π π φ a
45 simpl13 φ a s π π H s a c π π s π π K s K c s π π s π π H s a
46 rspa s π π H s a s π π H s a
47 45 46 sylancom φ a s π π H s a c π π s π π K s K c s π π H s a
48 simpl2 φ a s π π H s a c π π s π π K s K c s π π c π π
49 44 47 48 jca31 φ a s π π H s a c π π s π π K s K c s π π φ a H s a c π π
50 rspa s π π K s K c s π π K s K c
51 50 3ad2antl3 φ a s π π H s a c π π s π π K s K c s π π K s K c
52 simpr φ a s π π H s a c π π s π π K s K c s π π s π π
53 simp-5l φ a H s a c π π K s K c s π π φ
54 simpr φ s π π s π π
55 1 2 3 4 5 fourierdlem9 φ H : π π
56 55 ffvelrnda φ s π π H s
57 25 ffvelrni s π π K s
58 57 adantl φ s π π K s
59 56 58 remulcld φ s π π H s K s
60 7 fvmpt2 s π π H s K s U s = H s K s
61 54 59 60 syl2anc φ s π π U s = H s K s
62 61 59 eqeltrd φ s π π U s
63 62 recnd φ s π π U s
64 63 abscld φ s π π U s
65 53 64 sylancom φ a H s a c π π K s K c s π π U s
66 simp-5r φ a H s a c π π K s K c s π π a
67 simpllr φ a H s a c π π K s K c s π π c π π
68 66 67 30 syl2anc φ a H s a c π π K s K c s π π a K c
69 peano2re a K c a K c + 1
70 68 69 syl φ a H s a c π π K s K c s π π a K c + 1
71 61 fveq2d φ s π π U s = H s K s
72 53 71 sylancom φ a H s a c π π K s K c s π π U s = H s K s
73 56 recnd φ s π π H s
74 73 abscld φ s π π H s
75 53 74 sylancom φ a H s a c π π K s K c s π π H s
76 recn a a
77 76 abscld a a
78 66 77 syl φ a H s a c π π K s K c s π π a
79 57 recnd s π π K s
80 79 abscld s π π K s
81 80 adantl φ a H s a c π π K s K c s π π K s
82 26 recnd c π π K c
83 82 abscld c π π K c
84 67 83 syl φ a H s a c π π K s K c s π π K c
85 73 absge0d φ s π π 0 H s
86 53 85 sylancom φ a H s a c π π K s K c s π π 0 H s
87 82 absge0d c π π 0 K c
88 67 87 syl φ a H s a c π π K s K c s π π 0 K c
89 74 ad4ant14 φ a H s a s π π H s
90 simpllr φ a H s a s π π a
91 77 ad3antlr φ a H s a s π π a
92 simplr φ a H s a s π π H s a
93 90 leabsd φ a H s a s π π a a
94 89 90 91 92 93 letrd φ a H s a s π π H s a
95 94 ad4ant14 φ a H s a c π π K s K c s π π H s a
96 simplr φ a H s a c π π K s K c s π π K s K c
97 75 78 81 84 86 88 95 96 lemul12bd φ a H s a c π π K s K c s π π H s K s a K c
98 58 recnd φ s π π K s
99 73 98 absmuld φ s π π H s K s = H s K s
100 53 99 sylancom φ a H s a c π π K s K c s π π H s K s = H s K s
101 76 adantr a c π π a
102 27 recnd a c π π K c
103 101 102 absmuld a c π π a K c = a K c
104 66 67 103 syl2anc φ a H s a c π π K s K c s π π a K c = a K c
105 97 100 104 3brtr4d φ a H s a c π π K s K c s π π H s K s a K c
106 72 105 eqbrtrd φ a H s a c π π K s K c s π π U s a K c
107 68 ltp1d φ a H s a c π π K s K c s π π a K c < a K c + 1
108 65 68 70 106 107 lelttrd φ a H s a c π π K s K c s π π U s < a K c + 1
109 65 70 108 ltled φ a H s a c π π K s K c s π π U s a K c + 1
110 49 51 52 109 syl21anc φ a s π π H s a c π π s π π K s K c s π π U s a K c + 1
111 110 ex φ a s π π H s a c π π s π π K s K c s π π U s a K c + 1
112 41 111 ralrimi φ a s π π H s a c π π s π π K s K c s π π U s a K c + 1
113 breq2 b = a K c + 1 U s b U s a K c + 1
114 113 ralbidv b = a K c + 1 s π π U s b s π π U s a K c + 1
115 114 rspcev a K c + 1 + s π π U s a K c + 1 b + s π π U s b
116 34 112 115 syl2anc φ a s π π H s a c π π s π π K s K c b + s π π U s b
117 116 rexlimdv3a φ a s π π H s a c π π s π π K s K c b + s π π U s b
118 23 117 mpd φ a s π π H s a b + s π π U s b
119 118 rexlimdv3a φ a s π π H s a b + s π π U s b
120 8 119 mpd φ b + s π π U s b