Metamath Proof Explorer


Theorem fourierdlem78

Description: G is continuous when restricted on an interval not containing 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem78.f φ F :
fourierdlem78.a φ A π π
fourierdlem78.b φ B π π
fourierdlem78.x φ X
fourierdlem78.nxelab φ ¬ 0 A B
fourierdlem78.fcn φ F A + X B + X : A + X B + X cn
fourierdlem78.y φ Y
fourierdlem78.w φ W
fourierdlem78.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem78.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem78.u U = s π π H s K s
fourierdlem78.n φ N
fourierdlem78.s S = s π π sin N + 1 2 s
fourierdlem78.g G = s π π U s S s
Assertion fourierdlem78 φ G A B : A B cn

Proof

Step Hyp Ref Expression
1 fourierdlem78.f φ F :
2 fourierdlem78.a φ A π π
3 fourierdlem78.b φ B π π
4 fourierdlem78.x φ X
5 fourierdlem78.nxelab φ ¬ 0 A B
6 fourierdlem78.fcn φ F A + X B + X : A + X B + X cn
7 fourierdlem78.y φ Y
8 fourierdlem78.w φ W
9 fourierdlem78.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
10 fourierdlem78.k K = s π π if s = 0 1 s 2 sin s 2
11 fourierdlem78.u U = s π π H s K s
12 fourierdlem78.n φ N
13 fourierdlem78.s S = s π π sin N + 1 2 s
14 fourierdlem78.g G = s π π U s S s
15 14 a1i φ G = s π π U s S s
16 15 reseq1d φ G A B = s π π U s S s A B
17 pire π
18 17 renegcli π
19 18 a1i φ s A B π
20 17 a1i φ s A B π
21 elioore s A B s
22 21 adantl φ s A B s
23 18 a1i φ π
24 17 a1i φ π
25 23 24 iccssred φ π π
26 25 2 sseldd φ A
27 26 adantr φ s A B A
28 18 17 elicc2i A π π A π A A π
29 28 simp2bi A π π π A
30 2 29 syl φ π A
31 30 adantr φ s A B π A
32 27 rexrd φ s A B A *
33 25 3 sseldd φ B
34 33 rexrd φ B *
35 34 adantr φ s A B B *
36 simpr φ s A B s A B
37 ioogtlb A * B * s A B A < s
38 32 35 36 37 syl3anc φ s A B A < s
39 19 27 22 31 38 lelttrd φ s A B π < s
40 19 22 39 ltled φ s A B π s
41 33 adantr φ s A B B
42 iooltub A * B * s A B s < B
43 32 35 36 42 syl3anc φ s A B s < B
44 18 17 elicc2i B π π B π B B π
45 44 simp3bi B π π B π
46 3 45 syl φ B π
47 46 adantr φ s A B B π
48 22 41 20 43 47 ltletrd φ s A B s < π
49 22 20 48 ltled φ s A B s π
50 19 20 22 40 49 eliccd φ s A B s π π
51 50 ex φ s A B s π π
52 51 ssrdv φ A B π π
53 52 resmptd φ s π π U s S s A B = s A B U s S s
54 16 53 eqtrd φ G A B = s A B U s S s
55 0red φ s A B 0
56 1 adantr φ s A B F :
57 4 adantr φ s A B X
58 57 22 readdcld φ s A B X + s
59 56 58 ffvelrnd φ s A B F X + s
60 7 8 ifcld φ if 0 < s Y W
61 60 adantr φ s A B if 0 < s Y W
62 59 61 resubcld φ s A B F X + s if 0 < s Y W
63 eleq1 s = 0 s A B 0 A B
64 63 biimpac s A B s = 0 0 A B
65 64 adantll φ s A B s = 0 0 A B
66 5 ad2antrr φ s A B s = 0 ¬ 0 A B
67 65 66 pm2.65da φ s A B ¬ s = 0
68 67 neqned φ s A B s 0
69 62 22 68 redivcld φ s A B F X + s if 0 < s Y W s
70 55 69 ifcld φ s A B if s = 0 0 F X + s if 0 < s Y W s
71 9 fvmpt2 s π π if s = 0 0 F X + s if 0 < s Y W s H s = if s = 0 0 F X + s if 0 < s Y W s
72 50 70 71 syl2anc φ s A B H s = if s = 0 0 F X + s if 0 < s Y W s
73 72 70 eqeltrd φ s A B H s
74 1red φ s A B 1
75 2re 2
76 75 a1i φ s A B 2
77 22 rehalfcld φ s A B s 2
78 77 resincld φ s A B sin s 2
79 76 78 remulcld φ s A B 2 sin s 2
80 76 recnd φ s A B 2
81 78 recnd φ s A B sin s 2
82 2ne0 2 0
83 82 a1i φ s A B 2 0
84 fourierdlem44 s π π s 0 sin s 2 0
85 50 68 84 syl2anc φ s A B sin s 2 0
86 80 81 83 85 mulne0d φ s A B 2 sin s 2 0
87 22 79 86 redivcld φ s A B s 2 sin s 2
88 74 87 ifcld φ s A B if s = 0 1 s 2 sin s 2
89 10 fvmpt2 s π π if s = 0 1 s 2 sin s 2 K s = if s = 0 1 s 2 sin s 2
90 50 88 89 syl2anc φ s A B K s = if s = 0 1 s 2 sin s 2
91 90 88 eqeltrd φ s A B K s
92 73 91 remulcld φ s A B H s K s
93 11 fvmpt2 s π π H s K s U s = H s K s
94 50 92 93 syl2anc φ s A B U s = H s K s
95 94 92 eqeltrd φ s A B U s
96 12 adantr φ s A B N
97 76 83 rereccld φ s A B 1 2
98 96 97 readdcld φ s A B N + 1 2
99 98 22 remulcld φ s A B N + 1 2 s
100 99 resincld φ s A B sin N + 1 2 s
101 13 fvmpt2 s π π sin N + 1 2 s S s = sin N + 1 2 s
102 50 100 101 syl2anc φ s A B S s = sin N + 1 2 s
103 102 100 eqeltrd φ s A B S s
104 95 103 remulcld φ s A B U s S s
105 eqid s A B U s S s = s A B U s S s
106 104 105 fmptd φ s A B U s S s : A B
107 ax-resscn
108 107 a1i φ
109 94 mpteq2dva φ s A B U s = s A B H s K s
110 67 iffalsed φ s A B if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
111 62 recnd φ s A B F X + s if 0 < s Y W
112 22 recnd φ s A B s
113 111 112 68 divrecd φ s A B F X + s if 0 < s Y W s = F X + s if 0 < s Y W 1 s
114 72 110 113 3eqtrd φ s A B H s = F X + s if 0 < s Y W 1 s
115 114 mpteq2dva φ s A B H s = s A B F X + s if 0 < s Y W 1 s
116 59 recnd φ s A B F X + s
117 61 recnd φ s A B if 0 < s Y W
118 116 117 negsubd φ s A B F X + s + if 0 < s Y W = F X + s if 0 < s Y W
119 118 eqcomd φ s A B F X + s if 0 < s Y W = F X + s + if 0 < s Y W
120 119 mpteq2dva φ s A B F X + s if 0 < s Y W = s A B F X + s + if 0 < s Y W
121 26 4 readdcld φ A + X
122 121 rexrd φ A + X *
123 122 adantr φ s A B A + X *
124 33 4 readdcld φ B + X
125 124 rexrd φ B + X *
126 125 adantr φ s A B B + X *
127 26 recnd φ A
128 4 recnd φ X
129 127 128 addcomd φ A + X = X + A
130 129 adantr φ s A B A + X = X + A
131 27 22 57 38 ltadd2dd φ s A B X + A < X + s
132 130 131 eqbrtrd φ s A B A + X < X + s
133 22 41 57 43 ltadd2dd φ s A B X + s < X + B
134 33 recnd φ B
135 128 134 addcomd φ X + B = B + X
136 135 adantr φ s A B X + B = B + X
137 133 136 breqtrd φ s A B X + s < B + X
138 123 126 58 132 137 eliood φ s A B X + s A + X B + X
139 fvres X + s A + X B + X F A + X B + X X + s = F X + s
140 138 139 syl φ s A B F A + X B + X X + s = F X + s
141 140 eqcomd φ s A B F X + s = F A + X B + X X + s
142 141 mpteq2dva φ s A B F X + s = s A B F A + X B + X X + s
143 ioosscn A + X B + X
144 143 a1i φ A + X B + X
145 ioosscn A B
146 145 a1i φ A B
147 144 6 146 128 138 fourierdlem23 φ s A B F A + X B + X X + s : A B cn
148 142 147 eqeltrd φ s A B F X + s : A B cn
149 0red φ 0 A s A B 0
150 26 ad2antrr φ 0 A s A B A
151 21 adantl φ 0 A s A B s
152 simplr φ 0 A s A B 0 A
153 38 adantlr φ 0 A s A B A < s
154 149 150 151 152 153 lelttrd φ 0 A s A B 0 < s
155 154 iftrued φ 0 A s A B if 0 < s Y W = Y
156 155 negeqd φ 0 A s A B if 0 < s Y W = Y
157 156 mpteq2dva φ 0 A s A B if 0 < s Y W = s A B Y
158 7 renegcld φ Y
159 158 recnd φ Y
160 ssid
161 160 a1i φ
162 146 159 161 constcncfg φ s A B Y : A B cn
163 162 adantr φ 0 A s A B Y : A B cn
164 157 163 eqeltrd φ 0 A s A B if 0 < s Y W : A B cn
165 simpl φ ¬ 0 A φ
166 26 rexrd φ A *
167 166 ad2antrr φ ¬ 0 A ¬ B 0 A *
168 34 ad2antrr φ ¬ 0 A ¬ B 0 B *
169 0red φ ¬ 0 A ¬ B 0 0
170 simpr φ ¬ 0 A ¬ 0 A
171 26 adantr φ ¬ 0 A A
172 0red φ ¬ 0 A 0
173 171 172 ltnled φ ¬ 0 A A < 0 ¬ 0 A
174 170 173 mpbird φ ¬ 0 A A < 0
175 174 adantr φ ¬ 0 A ¬ B 0 A < 0
176 simpr φ ¬ B 0 ¬ B 0
177 0red φ ¬ B 0 0
178 33 adantr φ ¬ B 0 B
179 177 178 ltnled φ ¬ B 0 0 < B ¬ B 0
180 176 179 mpbird φ ¬ B 0 0 < B
181 180 adantlr φ ¬ 0 A ¬ B 0 0 < B
182 167 168 169 175 181 eliood φ ¬ 0 A ¬ B 0 0 A B
183 5 ad2antrr φ ¬ 0 A ¬ B 0 ¬ 0 A B
184 182 183 condan φ ¬ 0 A B 0
185 21 adantl φ B 0 s A B s
186 0red φ B 0 s A B 0
187 33 ad2antrr φ B 0 s A B B
188 43 adantlr φ B 0 s A B s < B
189 simplr φ B 0 s A B B 0
190 185 187 186 188 189 ltletrd φ B 0 s A B s < 0
191 185 186 190 ltnsymd φ B 0 s A B ¬ 0 < s
192 191 iffalsed φ B 0 s A B if 0 < s Y W = W
193 192 negeqd φ B 0 s A B if 0 < s Y W = W
194 193 mpteq2dva φ B 0 s A B if 0 < s Y W = s A B W
195 8 recnd φ W
196 195 negcld φ W
197 146 196 161 constcncfg φ s A B W : A B cn
198 197 adantr φ B 0 s A B W : A B cn
199 194 198 eqeltrd φ B 0 s A B if 0 < s Y W : A B cn
200 165 184 199 syl2anc φ ¬ 0 A s A B if 0 < s Y W : A B cn
201 164 200 pm2.61dan φ s A B if 0 < s Y W : A B cn
202 148 201 addcncf φ s A B F X + s + if 0 < s Y W : A B cn
203 120 202 eqeltrd φ s A B F X + s if 0 < s Y W : A B cn
204 eqid s 0 1 s = s 0 1 s
205 1cnd φ 1
206 204 cdivcncf 1 s 0 1 s : 0 cn
207 205 206 syl φ s 0 1 s : 0 cn
208 velsn s 0 s = 0
209 67 208 sylnibr φ s A B ¬ s 0
210 112 209 eldifd φ s A B s 0
211 210 ralrimiva φ s A B s 0
212 dfss3 A B 0 s A B s 0
213 211 212 sylibr φ A B 0
214 22 68 rereccld φ s A B 1 s
215 214 recnd φ s A B 1 s
216 204 207 213 161 215 cncfmptssg φ s A B 1 s : A B cn
217 203 216 mulcncf φ s A B F X + s if 0 < s Y W 1 s : A B cn
218 115 217 eqeltrd φ s A B H s : A B cn
219 67 iffalsed φ s A B if s = 0 1 s 2 sin s 2 = s 2 sin s 2
220 79 recnd φ s A B 2 sin s 2
221 112 220 86 divrecd φ s A B s 2 sin s 2 = s 1 2 sin s 2
222 90 219 221 3eqtrd φ s A B K s = s 1 2 sin s 2
223 222 mpteq2dva φ s A B K s = s A B s 1 2 sin s 2
224 219 221 eqtr2d φ s A B s 1 2 sin s 2 = if s = 0 1 s 2 sin s 2
225 224 mpteq2dva φ s A B s 1 2 sin s 2 = s A B if s = 0 1 s 2 sin s 2
226 eqid s π π if s = 0 1 s 2 sin s 2 = s π π if s = 0 1 s 2 sin s 2
227 cncfss π π cn π π cn
228 107 160 227 mp2an π π cn π π cn
229 226 fourierdlem62 s π π if s = 0 1 s 2 sin s 2 : π π cn
230 229 a1i φ s π π if s = 0 1 s 2 sin s 2 : π π cn
231 228 230 sselid φ s π π if s = 0 1 s 2 sin s 2 : π π cn
232 88 recnd φ s A B if s = 0 1 s 2 sin s 2
233 226 231 52 161 232 cncfmptssg φ s A B if s = 0 1 s 2 sin s 2 : A B cn
234 225 233 eqeltrd φ s A B s 1 2 sin s 2 : A B cn
235 223 234 eqeltrd φ s A B K s : A B cn
236 218 235 mulcncf φ s A B H s K s : A B cn
237 109 236 eqeltrd φ s A B U s : A B cn
238 102 mpteq2dva φ s A B S s = s A B sin N + 1 2 s
239 sincn sin : cn
240 239 a1i φ sin : cn
241 halfre 1 2
242 241 a1i φ 1 2
243 12 242 readdcld φ N + 1 2
244 243 recnd φ N + 1 2
245 146 244 161 constcncfg φ s A B N + 1 2 : A B cn
246 146 161 idcncfg φ s A B s : A B cn
247 245 246 mulcncf φ s A B N + 1 2 s : A B cn
248 240 247 cncfmpt1f φ s A B sin N + 1 2 s : A B cn
249 238 248 eqeltrd φ s A B S s : A B cn
250 237 249 mulcncf φ s A B U s S s : A B cn
251 cncffvrn s A B U s S s : A B cn s A B U s S s : A B cn s A B U s S s : A B
252 108 250 251 syl2anc φ s A B U s S s : A B cn s A B U s S s : A B
253 106 252 mpbird φ s A B U s S s : A B cn
254 54 253 eqeltrd φ G A B : A B cn