Metamath Proof Explorer


Theorem fourierdlem8

Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem8.a φ A *
fourierdlem8.b φ B *
fourierdlem8.q φ Q : 0 M A B
fourierdlem8.i φ I 0 ..^ M
Assertion fourierdlem8 φ Q I Q I + 1 A B

Proof

Step Hyp Ref Expression
1 fourierdlem8.a φ A *
2 fourierdlem8.b φ B *
3 fourierdlem8.q φ Q : 0 M A B
4 fourierdlem8.i φ I 0 ..^ M
5 1 adantr φ x Q I Q I + 1 A *
6 2 adantr φ x Q I Q I + 1 B *
7 3 adantr φ x Q I Q I + 1 Q : 0 M A B
8 4 adantr φ x Q I Q I + 1 I 0 ..^ M
9 simpr φ x Q I Q I + 1 x Q I Q I + 1
10 5 6 7 8 9 fourierdlem1 φ x Q I Q I + 1 x A B
11 10 ralrimiva φ x Q I Q I + 1 x A B
12 dfss3 Q I Q I + 1 A B x Q I Q I + 1 x A B
13 11 12 sylibr φ Q I Q I + 1 A B