Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem80.f |
|
2 |
|
fourierdlem80.xre |
|
3 |
|
fourierdlem80.a |
|
4 |
|
fourierdlem80.b |
|
5 |
|
fourierdlem80.ab |
|
6 |
|
fourierdlem80.n0 |
|
7 |
|
fourierdlem80.c |
|
8 |
|
fourierdlem80.o |
|
9 |
|
fourierdlem80.i |
|
10 |
|
fourierdlem80.fbdioo |
|
11 |
|
fourierdlem80.fdvbdioo |
|
12 |
|
fourierdlem80.sf |
|
13 |
|
fourierdlem80.slt |
|
14 |
|
fourierdlem80.sjss |
|
15 |
|
fourierdlem80.relioo |
|
16 |
|
fdv |
|
17 |
|
fourierdlem80.y |
|
18 |
|
fourierdlem80.ch |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
20
|
oveq1d |
|
22 |
|
oveq1 |
|
23 |
22
|
fveq2d |
|
24 |
23
|
oveq2d |
|
25 |
21 24
|
oveq12d |
|
26 |
25
|
cbvmptv |
|
27 |
8 26
|
eqtr2i |
|
28 |
27
|
oveq2i |
|
29 |
28
|
dmeqi |
|
30 |
29
|
ineq2i |
|
31 |
30
|
sneqi |
|
32 |
31
|
uneq1i |
|
33 |
|
snfi |
|
34 |
|
fzofi |
|
35 |
|
eqid |
|
36 |
35
|
rnmptfi |
|
37 |
34 36
|
ax-mp |
|
38 |
|
unfi |
|
39 |
33 37 38
|
mp2an |
|
40 |
39
|
a1i |
|
41 |
32 40
|
eqeltrid |
|
42 |
|
id |
|
43 |
32
|
unieqi |
|
44 |
42 43
|
eleqtrdi |
|
45 |
|
simpl |
|
46 |
|
uniun |
|
47 |
46
|
eleq2i |
|
48 |
|
elun |
|
49 |
47 48
|
sylbb |
|
50 |
49
|
adantl |
|
51 |
|
ovex |
|
52 |
51
|
a1i |
|
53 |
12 52
|
fexd |
|
54 |
|
rnexg |
|
55 |
53 54
|
syl |
|
56 |
|
inex1g |
|
57 |
55 56
|
syl |
|
58 |
|
unisng |
|
59 |
57 58
|
syl |
|
60 |
59
|
eleq2d |
|
61 |
60
|
adantr |
|
62 |
61
|
orbi1d |
|
63 |
50 62
|
mpbid |
|
64 |
|
dvf |
|
65 |
64
|
a1i |
|
66 |
|
elinel2 |
|
67 |
65 66
|
ffvelrnd |
|
68 |
67
|
adantl |
|
69 |
|
ovex |
|
70 |
69
|
dfiun3 |
|
71 |
70
|
eleq2i |
|
72 |
71
|
biimpri |
|
73 |
72
|
adantl |
|
74 |
|
eliun |
|
75 |
73 74
|
sylib |
|
76 |
|
nfv |
|
77 |
|
nfmpt1 |
|
78 |
77
|
nfrn |
|
79 |
78
|
nfuni |
|
80 |
79
|
nfcri |
|
81 |
76 80
|
nfan |
|
82 |
|
nfv |
|
83 |
64
|
a1i |
|
84 |
8
|
reseq1i |
|
85 |
|
ioossicc |
|
86 |
85 14
|
sstrid |
|
87 |
86
|
resmptd |
|
88 |
84 87
|
eqtrid |
|
89 |
17 88
|
eqtr4id |
|
90 |
89
|
oveq2d |
|
91 |
|
ax-resscn |
|
92 |
91
|
a1i |
|
93 |
1
|
adantr |
|
94 |
2
|
adantr |
|
95 |
3 4
|
iccssred |
|
96 |
95
|
sselda |
|
97 |
94 96
|
readdcld |
|
98 |
93 97
|
ffvelrnd |
|
99 |
98
|
recnd |
|
100 |
7
|
recnd |
|
101 |
100
|
adantr |
|
102 |
99 101
|
subcld |
|
103 |
|
2cnd |
|
104 |
95 92
|
sstrd |
|
105 |
104
|
sselda |
|
106 |
105
|
halfcld |
|
107 |
106
|
sincld |
|
108 |
103 107
|
mulcld |
|
109 |
|
2ne0 |
|
110 |
109
|
a1i |
|
111 |
5
|
sselda |
|
112 |
|
eqcom |
|
113 |
112
|
biimpi |
|
114 |
113
|
adantl |
|
115 |
|
simpl |
|
116 |
114 115
|
eqeltrd |
|
117 |
116
|
adantll |
|
118 |
6
|
ad2antrr |
|
119 |
117 118
|
pm2.65da |
|
120 |
119
|
neqned |
|
121 |
|
fourierdlem44 |
|
122 |
111 120 121
|
syl2anc |
|
123 |
103 107 110 122
|
mulne0d |
|
124 |
102 108 123
|
divcld |
|
125 |
124 8
|
fmptd |
|
126 |
|
ioossre |
|
127 |
126
|
a1i |
|
128 |
|
eqid |
|
129 |
128
|
tgioo2 |
|
130 |
128 129
|
dvres |
|
131 |
92 125 95 127 130
|
syl22anc |
|
132 |
|
ioontr |
|
133 |
132
|
reseq2i |
|
134 |
131 133
|
eqtrdi |
|
135 |
134
|
adantr |
|
136 |
90 135
|
eqtr2d |
|
137 |
136
|
dmeqd |
|
138 |
1
|
adantr |
|
139 |
2
|
adantr |
|
140 |
95
|
adantr |
|
141 |
12
|
adantr |
|
142 |
|
elfzofz |
|
143 |
142
|
adantl |
|
144 |
141 143
|
ffvelrnd |
|
145 |
140 144
|
sseldd |
|
146 |
|
fzofzp1 |
|
147 |
146
|
adantl |
|
148 |
141 147
|
ffvelrnd |
|
149 |
140 148
|
sseldd |
|
150 |
9
|
feq2i |
|
151 |
16 150
|
sylib |
|
152 |
9
|
reseq2i |
|
153 |
152
|
oveq2i |
|
154 |
153
|
feq1i |
|
155 |
151 154
|
sylib |
|
156 |
5
|
adantr |
|
157 |
86 156
|
sstrd |
|
158 |
6
|
adantr |
|
159 |
86 158
|
ssneldd |
|
160 |
7
|
adantr |
|
161 |
138 139 145 149 155 157 159 160 17
|
fourierdlem57 |
|
162 |
161
|
simpli |
|
163 |
162
|
simpld |
|
164 |
|
fdm |
|
165 |
163 164
|
syl |
|
166 |
137 165
|
eqtr2d |
|
167 |
|
resss |
|
168 |
|
dmss |
|
169 |
167 168
|
mp1i |
|
170 |
166 169
|
eqsstrd |
|
171 |
170
|
3adant3 |
|
172 |
|
simp3 |
|
173 |
171 172
|
sseldd |
|
174 |
83 173
|
ffvelrnd |
|
175 |
174
|
3exp |
|
176 |
175
|
adantr |
|
177 |
81 82 176
|
rexlimd |
|
178 |
75 177
|
mpd |
|
179 |
68 178
|
jaodan |
|
180 |
45 63 179
|
syl2anc |
|
181 |
180
|
abscld |
|
182 |
44 181
|
sylan2 |
|
183 |
|
id |
|
184 |
183 32
|
eleqtrdi |
|
185 |
|
elsni |
|
186 |
|
simpr |
|
187 |
|
fzfid |
|
188 |
|
rnffi |
|
189 |
12 187 188
|
syl2anc |
|
190 |
|
infi |
|
191 |
189 190
|
syl |
|
192 |
191
|
adantr |
|
193 |
186 192
|
eqeltrd |
|
194 |
|
nfv |
|
195 |
|
nfcv |
|
196 |
|
nfcv |
|
197 |
|
nfcv |
|
198 |
|
nfmpt1 |
|
199 |
8 198
|
nfcxfr |
|
200 |
196 197 199
|
nfov |
|
201 |
200
|
nfdm |
|
202 |
195 201
|
nfin |
|
203 |
202
|
nfeq2 |
|
204 |
194 203
|
nfan |
|
205 |
|
simpr |
|
206 |
|
simpl |
|
207 |
205 206
|
eleqtrd |
|
208 |
207 66
|
syl |
|
209 |
208
|
adantll |
|
210 |
64
|
ffvelrni |
|
211 |
210
|
abscld |
|
212 |
209 211
|
syl |
|
213 |
212
|
ex |
|
214 |
204 213
|
ralrimi |
|
215 |
|
fimaxre3 |
|
216 |
193 214 215
|
syl2anc |
|
217 |
185 216
|
sylan2 |
|
218 |
217
|
adantlr |
|
219 |
|
simpll |
|
220 |
|
elunnel1 |
|
221 |
220
|
adantll |
|
222 |
|
vex |
|
223 |
35
|
elrnmpt |
|
224 |
222 223
|
ax-mp |
|
225 |
224
|
biimpi |
|
226 |
225
|
adantl |
|
227 |
78
|
nfcri |
|
228 |
76 227
|
nfan |
|
229 |
|
nfv |
|
230 |
|
reeanv |
|
231 |
10 11 230
|
sylanbrc |
|
232 |
|
simp1 |
|
233 |
|
simp2l |
|
234 |
|
simp2r |
|
235 |
232 233 234
|
jca31 |
|
236 |
|
simp3l |
|
237 |
|
simp3r |
|
238 |
235 236 237
|
jca31 |
|
239 |
238 18
|
sylibr |
|
240 |
18
|
biimpi |
|
241 |
|
simp-5l |
|
242 |
240 241
|
syl |
|
243 |
242 1
|
syl |
|
244 |
242 2
|
syl |
|
245 |
|
simp-4l |
|
246 |
240 245
|
syl |
|
247 |
246 145
|
syl |
|
248 |
246 149
|
syl |
|
249 |
246 13
|
syl |
|
250 |
14 156
|
sstrd |
|
251 |
246 250
|
syl |
|
252 |
14 158
|
ssneldd |
|
253 |
246 252
|
syl |
|
254 |
246 155
|
syl |
|
255 |
|
simp-4r |
|
256 |
240 255
|
syl |
|
257 |
240
|
simplrd |
|
258 |
|
id |
|
259 |
258 9
|
eleqtrrdi |
|
260 |
|
rspa |
|
261 |
257 259 260
|
syl2an |
|
262 |
|
simpllr |
|
263 |
240 262
|
syl |
|
264 |
153
|
fveq1i |
|
265 |
264
|
fveq2i |
|
266 |
240
|
simprd |
|
267 |
266
|
r19.21bi |
|
268 |
265 267
|
eqbrtrrid |
|
269 |
259 268
|
sylan2 |
|
270 |
242 7
|
syl |
|
271 |
243 244 247 248 249 251 253 254 256 261 263 269 270 17
|
fourierdlem68 |
|
272 |
271
|
simprd |
|
273 |
271
|
simpld |
|
274 |
273
|
raleqdv |
|
275 |
274
|
rexbidv |
|
276 |
272 275
|
mpbid |
|
277 |
132
|
eqcomi |
|
278 |
277
|
reseq2i |
|
279 |
278
|
fveq1i |
|
280 |
|
fvres |
|
281 |
280
|
adantl |
|
282 |
246 86
|
syl |
|
283 |
282
|
resmptd |
|
284 |
84 283
|
eqtrid |
|
285 |
17 284
|
eqtr4id |
|
286 |
285
|
oveq2d |
|
287 |
286
|
fveq1d |
|
288 |
131
|
fveq1d |
|
289 |
242 288
|
syl |
|
290 |
287 289
|
eqtr2d |
|
291 |
290
|
adantr |
|
292 |
279 281 291
|
3eqtr3a |
|
293 |
292
|
fveq2d |
|
294 |
293
|
breq1d |
|
295 |
294
|
ralbidva |
|
296 |
295
|
rexbidv |
|
297 |
276 296
|
mpbird |
|
298 |
239 297
|
syl |
|
299 |
298
|
3exp |
|
300 |
299
|
rexlimdvv |
|
301 |
231 300
|
mpd |
|
302 |
301
|
3adant3 |
|
303 |
|
raleq |
|
304 |
303
|
3ad2ant3 |
|
305 |
304
|
rexbidv |
|
306 |
302 305
|
mpbird |
|
307 |
306
|
3exp |
|
308 |
307
|
adantr |
|
309 |
228 229 308
|
rexlimd |
|
310 |
226 309
|
mpd |
|
311 |
219 221 310
|
syl2anc |
|
312 |
218 311
|
pm2.61dan |
|
313 |
184 312
|
sylan2 |
|
314 |
|
pm3.22 |
|
315 |
|
elin |
|
316 |
314 315
|
sylibr |
|
317 |
316
|
adantll |
|
318 |
59
|
eqcomd |
|
319 |
318
|
ad2antrr |
|
320 |
317 319
|
eleqtrd |
|
321 |
320
|
orcd |
|
322 |
|
simpll |
|
323 |
91
|
a1i |
|
324 |
125
|
adantr |
|
325 |
3
|
adantr |
|
326 |
4
|
adantr |
|
327 |
325 326
|
iccssred |
|
328 |
323 324 327
|
dvbss |
|
329 |
|
simpr |
|
330 |
328 329
|
sseldd |
|
331 |
330
|
adantr |
|
332 |
|
simpr |
|
333 |
|
fveq2 |
|
334 |
|
oveq1 |
|
335 |
334
|
fveq2d |
|
336 |
333 335
|
oveq12d |
|
337 |
|
ovex |
|
338 |
336 35 337
|
fvmpt |
|
339 |
338
|
eleq2d |
|
340 |
339
|
rexbiia |
|
341 |
15 340
|
sylibr |
|
342 |
69 35
|
dmmpti |
|
343 |
342
|
rexeqi |
|
344 |
341 343
|
sylibr |
|
345 |
322 331 332 344
|
syl21anc |
|
346 |
|
funmpt |
|
347 |
|
elunirn |
|
348 |
346 347
|
mp1i |
|
349 |
345 348
|
mpbird |
|
350 |
349
|
olcd |
|
351 |
321 350
|
pm2.61dan |
|
352 |
|
elun |
|
353 |
351 352
|
sylibr |
|
354 |
353 46
|
eleqtrrdi |
|
355 |
354
|
ralrimiva |
|
356 |
|
dfss3 |
|
357 |
355 356
|
sylibr |
|
358 |
357 43
|
sseqtrrdi |
|
359 |
41 182 313 358
|
ssfiunibd |
|