Metamath Proof Explorer


Theorem fourierdlem80

Description: The derivative of O is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem80.f φ F :
fourierdlem80.xre φ X
fourierdlem80.a φ A
fourierdlem80.b φ B
fourierdlem80.ab φ A B π π
fourierdlem80.n0 φ ¬ 0 A B
fourierdlem80.c φ C
fourierdlem80.o O = s A B F X + s C 2 sin s 2
fourierdlem80.i I = X + S j X + S j + 1
fourierdlem80.fbdioo φ j 0 ..^ N w t I F t w
fourierdlem80.fdvbdioo φ j 0 ..^ N z t I F I t z
fourierdlem80.sf φ S : 0 N A B
fourierdlem80.slt φ j 0 ..^ N S j < S j + 1
fourierdlem80.sjss φ j 0 ..^ N S j S j + 1 A B
fourierdlem80.relioo φ r A B ¬ r ran S k 0 ..^ N r S k S k + 1
fdv φ j 0 ..^ N F I : I
fourierdlem80.y Y = s S j S j + 1 F X + s C 2 sin s 2
fourierdlem80.ch χ φ j 0 ..^ N w z t I F t w t I F I t z
Assertion fourierdlem80 φ b s dom O O s b

Proof

Step Hyp Ref Expression
1 fourierdlem80.f φ F :
2 fourierdlem80.xre φ X
3 fourierdlem80.a φ A
4 fourierdlem80.b φ B
5 fourierdlem80.ab φ A B π π
6 fourierdlem80.n0 φ ¬ 0 A B
7 fourierdlem80.c φ C
8 fourierdlem80.o O = s A B F X + s C 2 sin s 2
9 fourierdlem80.i I = X + S j X + S j + 1
10 fourierdlem80.fbdioo φ j 0 ..^ N w t I F t w
11 fourierdlem80.fdvbdioo φ j 0 ..^ N z t I F I t z
12 fourierdlem80.sf φ S : 0 N A B
13 fourierdlem80.slt φ j 0 ..^ N S j < S j + 1
14 fourierdlem80.sjss φ j 0 ..^ N S j S j + 1 A B
15 fourierdlem80.relioo φ r A B ¬ r ran S k 0 ..^ N r S k S k + 1
16 fdv φ j 0 ..^ N F I : I
17 fourierdlem80.y Y = s S j S j + 1 F X + s C 2 sin s 2
18 fourierdlem80.ch χ φ j 0 ..^ N w z t I F t w t I F I t z
19 oveq2 s = t X + s = X + t
20 19 fveq2d s = t F X + s = F X + t
21 20 oveq1d s = t F X + s C = F X + t C
22 oveq1 s = t s 2 = t 2
23 22 fveq2d s = t sin s 2 = sin t 2
24 23 oveq2d s = t 2 sin s 2 = 2 sin t 2
25 21 24 oveq12d s = t F X + s C 2 sin s 2 = F X + t C 2 sin t 2
26 25 cbvmptv s A B F X + s C 2 sin s 2 = t A B F X + t C 2 sin t 2
27 8 26 eqtr2i t A B F X + t C 2 sin t 2 = O
28 27 oveq2i dt A B F X + t C 2 sin t 2 d t = D O
29 28 dmeqi dom dt A B F X + t C 2 sin t 2 d t = dom O
30 29 ineq2i ran S dom dt A B F X + t C 2 sin t 2 d t = ran S dom O
31 30 sneqi ran S dom dt A B F X + t C 2 sin t 2 d t = ran S dom O
32 31 uneq1i ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
33 snfi ran S dom O Fin
34 fzofi 0 ..^ N Fin
35 eqid j 0 ..^ N S j S j + 1 = j 0 ..^ N S j S j + 1
36 35 rnmptfi 0 ..^ N Fin ran j 0 ..^ N S j S j + 1 Fin
37 34 36 ax-mp ran j 0 ..^ N S j S j + 1 Fin
38 unfi ran S dom O Fin ran j 0 ..^ N S j S j + 1 Fin ran S dom O ran j 0 ..^ N S j S j + 1 Fin
39 33 37 38 mp2an ran S dom O ran j 0 ..^ N S j S j + 1 Fin
40 39 a1i φ ran S dom O ran j 0 ..^ N S j S j + 1 Fin
41 32 40 eqeltrid φ ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 Fin
42 id s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
43 32 unieqi ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
44 42 43 eleqtrdi s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 s ran S dom O ran j 0 ..^ N S j S j + 1
45 simpl φ s ran S dom O ran j 0 ..^ N S j S j + 1 φ
46 uniun ran S dom O ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
47 46 eleq2i s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O ran j 0 ..^ N S j S j + 1
48 elun s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
49 47 48 sylbb s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
50 49 adantl φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
51 ovex 0 N V
52 51 a1i φ 0 N V
53 12 52 fexd φ S V
54 rnexg S V ran S V
55 inex1g ran S V ran S dom O V
56 unisng ran S dom O V ran S dom O = ran S dom O
57 53 54 55 56 4syl φ ran S dom O = ran S dom O
58 57 eleq2d φ s ran S dom O s ran S dom O
59 58 adantr φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran S dom O
60 59 orbi1d φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
61 50 60 mpbid φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
62 dvf O : dom O
63 62 a1i s ran S dom O O : dom O
64 elinel2 s ran S dom O s dom O
65 63 64 ffvelcdmd s ran S dom O O s
66 65 adantl φ s ran S dom O O s
67 ovex S j S j + 1 V
68 67 dfiun3 j 0 ..^ N S j S j + 1 = ran j 0 ..^ N S j S j + 1
69 68 eleq2i s j 0 ..^ N S j S j + 1 s ran j 0 ..^ N S j S j + 1
70 69 biimpri s ran j 0 ..^ N S j S j + 1 s j 0 ..^ N S j S j + 1
71 70 adantl φ s ran j 0 ..^ N S j S j + 1 s j 0 ..^ N S j S j + 1
72 eliun s j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1
73 71 72 sylib φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1
74 nfv j φ
75 nfmpt1 _ j j 0 ..^ N S j S j + 1
76 75 nfrn _ j ran j 0 ..^ N S j S j + 1
77 76 nfuni _ j ran j 0 ..^ N S j S j + 1
78 77 nfcri j s ran j 0 ..^ N S j S j + 1
79 74 78 nfan j φ s ran j 0 ..^ N S j S j + 1
80 nfv j O s
81 62 a1i φ j 0 ..^ N s S j S j + 1 O : dom O
82 8 reseq1i O S j S j + 1 = s A B F X + s C 2 sin s 2 S j S j + 1
83 ioossicc S j S j + 1 S j S j + 1
84 83 14 sstrid φ j 0 ..^ N S j S j + 1 A B
85 84 resmptd φ j 0 ..^ N s A B F X + s C 2 sin s 2 S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
86 82 85 eqtrid φ j 0 ..^ N O S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
87 17 86 eqtr4id φ j 0 ..^ N Y = O S j S j + 1
88 87 oveq2d φ j 0 ..^ N D Y = D O S j S j + 1
89 ax-resscn
90 89 a1i φ
91 1 adantr φ s A B F :
92 2 adantr φ s A B X
93 3 4 iccssred φ A B
94 93 sselda φ s A B s
95 92 94 readdcld φ s A B X + s
96 91 95 ffvelcdmd φ s A B F X + s
97 96 recnd φ s A B F X + s
98 7 recnd φ C
99 98 adantr φ s A B C
100 97 99 subcld φ s A B F X + s C
101 2cnd φ s A B 2
102 93 90 sstrd φ A B
103 102 sselda φ s A B s
104 103 halfcld φ s A B s 2
105 104 sincld φ s A B sin s 2
106 101 105 mulcld φ s A B 2 sin s 2
107 2ne0 2 0
108 107 a1i φ s A B 2 0
109 5 sselda φ s A B s π π
110 eqcom s = 0 0 = s
111 110 biimpi s = 0 0 = s
112 111 adantl s A B s = 0 0 = s
113 simpl s A B s = 0 s A B
114 112 113 eqeltrd s A B s = 0 0 A B
115 114 adantll φ s A B s = 0 0 A B
116 6 ad2antrr φ s A B s = 0 ¬ 0 A B
117 115 116 pm2.65da φ s A B ¬ s = 0
118 117 neqned φ s A B s 0
119 fourierdlem44 s π π s 0 sin s 2 0
120 109 118 119 syl2anc φ s A B sin s 2 0
121 101 105 108 120 mulne0d φ s A B 2 sin s 2 0
122 100 106 121 divcld φ s A B F X + s C 2 sin s 2
123 122 8 fmptd φ O : A B
124 ioossre S j S j + 1
125 124 a1i φ S j S j + 1
126 eqid TopOpen fld = TopOpen fld
127 126 tgioo2 topGen ran . = TopOpen fld 𝑡
128 126 127 dvres O : A B A B S j S j + 1 D O S j S j + 1 = O int topGen ran . S j S j + 1
129 90 123 93 125 128 syl22anc φ D O S j S j + 1 = O int topGen ran . S j S j + 1
130 ioontr int topGen ran . S j S j + 1 = S j S j + 1
131 130 reseq2i O int topGen ran . S j S j + 1 = O S j S j + 1
132 129 131 eqtrdi φ D O S j S j + 1 = O S j S j + 1
133 132 adantr φ j 0 ..^ N D O S j S j + 1 = O S j S j + 1
134 88 133 eqtr2d φ j 0 ..^ N O S j S j + 1 = D Y
135 134 dmeqd φ j 0 ..^ N dom O S j S j + 1 = dom Y
136 1 adantr φ j 0 ..^ N F :
137 2 adantr φ j 0 ..^ N X
138 93 adantr φ j 0 ..^ N A B
139 12 adantr φ j 0 ..^ N S : 0 N A B
140 elfzofz j 0 ..^ N j 0 N
141 140 adantl φ j 0 ..^ N j 0 N
142 139 141 ffvelcdmd φ j 0 ..^ N S j A B
143 138 142 sseldd φ j 0 ..^ N S j
144 fzofzp1 j 0 ..^ N j + 1 0 N
145 144 adantl φ j 0 ..^ N j + 1 0 N
146 139 145 ffvelcdmd φ j 0 ..^ N S j + 1 A B
147 138 146 sseldd φ j 0 ..^ N S j + 1
148 9 feq2i F I : I F I : X + S j X + S j + 1
149 16 148 sylib φ j 0 ..^ N F I : X + S j X + S j + 1
150 9 reseq2i F I = F X + S j X + S j + 1
151 150 oveq2i D F I = D F X + S j X + S j + 1
152 151 feq1i F I : X + S j X + S j + 1 F X + S j X + S j + 1 : X + S j X + S j + 1
153 149 152 sylib φ j 0 ..^ N F X + S j X + S j + 1 : X + S j X + S j + 1
154 5 adantr φ j 0 ..^ N A B π π
155 84 154 sstrd φ j 0 ..^ N S j S j + 1 π π
156 6 adantr φ j 0 ..^ N ¬ 0 A B
157 84 156 ssneldd φ j 0 ..^ N ¬ 0 S j S j + 1
158 7 adantr φ j 0 ..^ N C
159 136 137 143 147 153 155 157 158 17 fourierdlem57 φ j 0 ..^ N Y : S j S j + 1 D Y = s S j S j + 1 F X + S j X + S j + 1 X + s 2 sin s 2 cos s 2 F X + s C 2 sin s 2 2 ds S j S j + 1 2 sin s 2 d s = s S j S j + 1 cos s 2
160 159 simpli φ j 0 ..^ N Y : S j S j + 1 D Y = s S j S j + 1 F X + S j X + S j + 1 X + s 2 sin s 2 cos s 2 F X + s C 2 sin s 2 2
161 160 simpld φ j 0 ..^ N Y : S j S j + 1
162 fdm Y : S j S j + 1 dom Y = S j S j + 1
163 161 162 syl φ j 0 ..^ N dom Y = S j S j + 1
164 135 163 eqtr2d φ j 0 ..^ N S j S j + 1 = dom O S j S j + 1
165 resss O S j S j + 1 D O
166 dmss O S j S j + 1 D O dom O S j S j + 1 dom O
167 165 166 mp1i φ j 0 ..^ N dom O S j S j + 1 dom O
168 164 167 eqsstrd φ j 0 ..^ N S j S j + 1 dom O
169 168 3adant3 φ j 0 ..^ N s S j S j + 1 S j S j + 1 dom O
170 simp3 φ j 0 ..^ N s S j S j + 1 s S j S j + 1
171 169 170 sseldd φ j 0 ..^ N s S j S j + 1 s dom O
172 81 171 ffvelcdmd φ j 0 ..^ N s S j S j + 1 O s
173 172 3exp φ j 0 ..^ N s S j S j + 1 O s
174 173 adantr φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1 O s
175 79 80 174 rexlimd φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1 O s
176 73 175 mpd φ s ran j 0 ..^ N S j S j + 1 O s
177 66 176 jaodan φ s ran S dom O s ran j 0 ..^ N S j S j + 1 O s
178 45 61 177 syl2anc φ s ran S dom O ran j 0 ..^ N S j S j + 1 O s
179 178 abscld φ s ran S dom O ran j 0 ..^ N S j S j + 1 O s
180 44 179 sylan2 φ s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 O s
181 id r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
182 181 32 eleqtrdi r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 r ran S dom O ran j 0 ..^ N S j S j + 1
183 elsni r ran S dom O r = ran S dom O
184 simpr φ r = ran S dom O r = ran S dom O
185 fzfid φ 0 N Fin
186 rnffi S : 0 N A B 0 N Fin ran S Fin
187 12 185 186 syl2anc φ ran S Fin
188 infi ran S Fin ran S dom O Fin
189 187 188 syl φ ran S dom O Fin
190 189 adantr φ r = ran S dom O ran S dom O Fin
191 184 190 eqeltrd φ r = ran S dom O r Fin
192 nfv s φ
193 nfcv _ s ran S
194 nfcv _ s
195 nfcv _ s D
196 nfmpt1 _ s s A B F X + s C 2 sin s 2
197 8 196 nfcxfr _ s O
198 194 195 197 nfov _ s O
199 198 nfdm _ s dom O
200 193 199 nfin _ s ran S dom O
201 200 nfeq2 s r = ran S dom O
202 192 201 nfan s φ r = ran S dom O
203 simpr r = ran S dom O s r s r
204 simpl r = ran S dom O s r r = ran S dom O
205 203 204 eleqtrd r = ran S dom O s r s ran S dom O
206 205 64 syl r = ran S dom O s r s dom O
207 206 adantll φ r = ran S dom O s r s dom O
208 62 ffvelcdmi s dom O O s
209 208 abscld s dom O O s
210 207 209 syl φ r = ran S dom O s r O s
211 210 ex φ r = ran S dom O s r O s
212 202 211 ralrimi φ r = ran S dom O s r O s
213 fimaxre3 r Fin s r O s y s r O s y
214 191 212 213 syl2anc φ r = ran S dom O y s r O s y
215 183 214 sylan2 φ r ran S dom O y s r O s y
216 215 adantlr φ r ran S dom O ran j 0 ..^ N S j S j + 1 r ran S dom O y s r O s y
217 simpll φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O φ
218 elunnel1 r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O r ran j 0 ..^ N S j S j + 1
219 218 adantll φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O r ran j 0 ..^ N S j S j + 1
220 vex r V
221 35 elrnmpt r V r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
222 220 221 ax-mp r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
223 222 biimpi r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
224 223 adantl φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
225 76 nfcri j r ran j 0 ..^ N S j S j + 1
226 74 225 nfan j φ r ran j 0 ..^ N S j S j + 1
227 nfv j y s r O s y
228 reeanv w z t I F t w t I F I t z w t I F t w z t I F I t z
229 10 11 228 sylanbrc φ j 0 ..^ N w z t I F t w t I F I t z
230 simp1 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N
231 simp2l φ j 0 ..^ N w z t I F t w t I F I t z w
232 simp2r φ j 0 ..^ N w z t I F t w t I F I t z z
233 230 231 232 jca31 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N w z
234 simp3l φ j 0 ..^ N w z t I F t w t I F I t z t I F t w
235 simp3r φ j 0 ..^ N w z t I F t w t I F I t z t I F I t z
236 233 234 235 jca31 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N w z t I F t w t I F I t z
237 236 18 sylibr φ j 0 ..^ N w z t I F t w t I F I t z χ
238 18 biimpi χ φ j 0 ..^ N w z t I F t w t I F I t z
239 simp-5l φ j 0 ..^ N w z t I F t w t I F I t z φ
240 238 239 syl χ φ
241 240 1 syl χ F :
242 240 2 syl χ X
243 simp-4l φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N
244 238 243 syl χ φ j 0 ..^ N
245 244 143 syl χ S j
246 244 147 syl χ S j + 1
247 244 13 syl χ S j < S j + 1
248 14 154 sstrd φ j 0 ..^ N S j S j + 1 π π
249 244 248 syl χ S j S j + 1 π π
250 14 156 ssneldd φ j 0 ..^ N ¬ 0 S j S j + 1
251 244 250 syl χ ¬ 0 S j S j + 1
252 244 153 syl χ F X + S j X + S j + 1 : X + S j X + S j + 1
253 simp-4r φ j 0 ..^ N w z t I F t w t I F I t z w
254 238 253 syl χ w
255 238 simplrd χ t I F t w
256 id t X + S j X + S j + 1 t X + S j X + S j + 1
257 256 9 eleqtrrdi t X + S j X + S j + 1 t I
258 rspa t I F t w t I F t w
259 255 257 258 syl2an χ t X + S j X + S j + 1 F t w
260 simpllr φ j 0 ..^ N w z t I F t w t I F I t z z
261 238 260 syl χ z
262 151 fveq1i F I t = F X + S j X + S j + 1 t
263 262 fveq2i F I t = F X + S j X + S j + 1 t
264 238 simprd χ t I F I t z
265 264 r19.21bi χ t I F I t z
266 263 265 eqbrtrrid χ t I F X + S j X + S j + 1 t z
267 257 266 sylan2 χ t X + S j X + S j + 1 F X + S j X + S j + 1 t z
268 240 7 syl χ C
269 241 242 245 246 247 249 251 252 254 259 261 267 268 17 fourierdlem68 χ dom Y = S j S j + 1 y s dom Y Y s y
270 269 simprd χ y s dom Y Y s y
271 269 simpld χ dom Y = S j S j + 1
272 271 raleqdv χ s dom Y Y s y s S j S j + 1 Y s y
273 272 rexbidv χ y s dom Y Y s y y s S j S j + 1 Y s y
274 270 273 mpbid χ y s S j S j + 1 Y s y
275 130 eqcomi S j S j + 1 = int topGen ran . S j S j + 1
276 275 reseq2i O S j S j + 1 = O int topGen ran . S j S j + 1
277 276 fveq1i O S j S j + 1 s = O int topGen ran . S j S j + 1 s
278 fvres s S j S j + 1 O S j S j + 1 s = O s
279 278 adantl χ s S j S j + 1 O S j S j + 1 s = O s
280 244 84 syl χ S j S j + 1 A B
281 280 resmptd χ s A B F X + s C 2 sin s 2 S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
282 82 281 eqtrid χ O S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
283 17 282 eqtr4id χ Y = O S j S j + 1
284 283 oveq2d χ D Y = D O S j S j + 1
285 284 fveq1d χ Y s = O S j S j + 1 s
286 129 fveq1d φ O S j S j + 1 s = O int topGen ran . S j S j + 1 s
287 240 286 syl χ O S j S j + 1 s = O int topGen ran . S j S j + 1 s
288 285 287 eqtr2d χ O int topGen ran . S j S j + 1 s = Y s
289 288 adantr χ s S j S j + 1 O int topGen ran . S j S j + 1 s = Y s
290 277 279 289 3eqtr3a χ s S j S j + 1 O s = Y s
291 290 fveq2d χ s S j S j + 1 O s = Y s
292 291 breq1d χ s S j S j + 1 O s y Y s y
293 292 ralbidva χ s S j S j + 1 O s y s S j S j + 1 Y s y
294 293 rexbidv χ y s S j S j + 1 O s y y s S j S j + 1 Y s y
295 274 294 mpbird χ y s S j S j + 1 O s y
296 237 295 syl φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
297 296 3exp φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
298 297 rexlimdvv φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
299 229 298 mpd φ j 0 ..^ N y s S j S j + 1 O s y
300 299 3adant3 φ j 0 ..^ N r = S j S j + 1 y s S j S j + 1 O s y
301 raleq r = S j S j + 1 s r O s y s S j S j + 1 O s y
302 301 3ad2ant3 φ j 0 ..^ N r = S j S j + 1 s r O s y s S j S j + 1 O s y
303 302 rexbidv φ j 0 ..^ N r = S j S j + 1 y s r O s y y s S j S j + 1 O s y
304 300 303 mpbird φ j 0 ..^ N r = S j S j + 1 y s r O s y
305 304 3exp φ j 0 ..^ N r = S j S j + 1 y s r O s y
306 305 adantr φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1 y s r O s y
307 226 227 306 rexlimd φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1 y s r O s y
308 224 307 mpd φ r ran j 0 ..^ N S j S j + 1 y s r O s y
309 217 219 308 syl2anc φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O y s r O s y
310 216 309 pm2.61dan φ r ran S dom O ran j 0 ..^ N S j S j + 1 y s r O s y
311 182 310 sylan2 φ r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 y s r O s y
312 pm3.22 r dom O r ran S r ran S r dom O
313 elin r ran S dom O r ran S r dom O
314 312 313 sylibr r dom O r ran S r ran S dom O
315 314 adantll φ r dom O r ran S r ran S dom O
316 57 eqcomd φ ran S dom O = ran S dom O
317 316 ad2antrr φ r dom O r ran S ran S dom O = ran S dom O
318 315 317 eleqtrd φ r dom O r ran S r ran S dom O
319 318 orcd φ r dom O r ran S r ran S dom O r ran j 0 ..^ N S j S j + 1
320 simpll φ r dom O ¬ r ran S φ
321 89 a1i φ r dom O
322 123 adantr φ r dom O O : A B
323 3 adantr φ r dom O A
324 4 adantr φ r dom O B
325 323 324 iccssred φ r dom O A B
326 321 322 325 dvbss φ r dom O dom O A B
327 simpr φ r dom O r dom O
328 326 327 sseldd φ r dom O r A B
329 328 adantr φ r dom O ¬ r ran S r A B
330 simpr φ r dom O ¬ r ran S ¬ r ran S
331 fveq2 j = k S j = S k
332 oveq1 j = k j + 1 = k + 1
333 332 fveq2d j = k S j + 1 = S k + 1
334 331 333 oveq12d j = k S j S j + 1 = S k S k + 1
335 ovex S k S k + 1 V
336 334 35 335 fvmpt k 0 ..^ N j 0 ..^ N S j S j + 1 k = S k S k + 1
337 336 eleq2d k 0 ..^ N r j 0 ..^ N S j S j + 1 k r S k S k + 1
338 337 rexbiia k 0 ..^ N r j 0 ..^ N S j S j + 1 k k 0 ..^ N r S k S k + 1
339 15 338 sylibr φ r A B ¬ r ran S k 0 ..^ N r j 0 ..^ N S j S j + 1 k
340 67 35 dmmpti dom j 0 ..^ N S j S j + 1 = 0 ..^ N
341 340 rexeqi k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k k 0 ..^ N r j 0 ..^ N S j S j + 1 k
342 339 341 sylibr φ r A B ¬ r ran S k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
343 320 329 330 342 syl21anc φ r dom O ¬ r ran S k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
344 funmpt Fun j 0 ..^ N S j S j + 1
345 elunirn Fun j 0 ..^ N S j S j + 1 r ran j 0 ..^ N S j S j + 1 k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
346 344 345 mp1i φ r dom O ¬ r ran S r ran j 0 ..^ N S j S j + 1 k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
347 343 346 mpbird φ r dom O ¬ r ran S r ran j 0 ..^ N S j S j + 1
348 347 olcd φ r dom O ¬ r ran S r ran S dom O r ran j 0 ..^ N S j S j + 1
349 319 348 pm2.61dan φ r dom O r ran S dom O r ran j 0 ..^ N S j S j + 1
350 elun r ran S dom O ran j 0 ..^ N S j S j + 1 r ran S dom O r ran j 0 ..^ N S j S j + 1
351 349 350 sylibr φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
352 351 46 eleqtrrdi φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
353 352 ralrimiva φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
354 dfss3 dom O ran S dom O ran j 0 ..^ N S j S j + 1 r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
355 353 354 sylibr φ dom O ran S dom O ran j 0 ..^ N S j S j + 1
356 355 43 sseqtrrdi φ dom O ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
357 41 180 311 356 ssfiunibd φ b s dom O O s b