Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem80.f |
|
2 |
|
fourierdlem80.xre |
|
3 |
|
fourierdlem80.a |
|
4 |
|
fourierdlem80.b |
|
5 |
|
fourierdlem80.ab |
|
6 |
|
fourierdlem80.n0 |
|
7 |
|
fourierdlem80.c |
|
8 |
|
fourierdlem80.o |
|
9 |
|
fourierdlem80.i |
|
10 |
|
fourierdlem80.fbdioo |
|
11 |
|
fourierdlem80.fdvbdioo |
|
12 |
|
fourierdlem80.sf |
|
13 |
|
fourierdlem80.slt |
|
14 |
|
fourierdlem80.sjss |
|
15 |
|
fourierdlem80.relioo |
|
16 |
|
fdv |
|
17 |
|
fourierdlem80.y |
|
18 |
|
fourierdlem80.ch |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
20
|
oveq1d |
|
22 |
|
oveq1 |
|
23 |
22
|
fveq2d |
|
24 |
23
|
oveq2d |
|
25 |
21 24
|
oveq12d |
|
26 |
25
|
cbvmptv |
|
27 |
8 26
|
eqtr2i |
|
28 |
27
|
oveq2i |
|
29 |
28
|
dmeqi |
|
30 |
29
|
ineq2i |
|
31 |
30
|
sneqi |
|
32 |
31
|
uneq1i |
|
33 |
|
snfi |
|
34 |
|
fzofi |
|
35 |
|
eqid |
|
36 |
35
|
rnmptfi |
|
37 |
34 36
|
ax-mp |
|
38 |
|
unfi |
|
39 |
33 37 38
|
mp2an |
|
40 |
39
|
a1i |
|
41 |
32 40
|
eqeltrid |
|
42 |
|
id |
|
43 |
32
|
unieqi |
|
44 |
42 43
|
eleqtrdi |
|
45 |
|
simpl |
|
46 |
|
uniun |
|
47 |
46
|
eleq2i |
|
48 |
|
elun |
|
49 |
47 48
|
sylbb |
|
50 |
49
|
adantl |
|
51 |
|
ovex |
|
52 |
51
|
a1i |
|
53 |
12 52
|
fexd |
|
54 |
|
rnexg |
|
55 |
|
inex1g |
|
56 |
|
unisng |
|
57 |
53 54 55 56
|
4syl |
|
58 |
57
|
eleq2d |
|
59 |
58
|
adantr |
|
60 |
59
|
orbi1d |
|
61 |
50 60
|
mpbid |
|
62 |
|
dvf |
|
63 |
62
|
a1i |
|
64 |
|
elinel2 |
|
65 |
63 64
|
ffvelcdmd |
|
66 |
65
|
adantl |
|
67 |
|
ovex |
|
68 |
67
|
dfiun3 |
|
69 |
68
|
eleq2i |
|
70 |
69
|
biimpri |
|
71 |
70
|
adantl |
|
72 |
|
eliun |
|
73 |
71 72
|
sylib |
|
74 |
|
nfv |
|
75 |
|
nfmpt1 |
|
76 |
75
|
nfrn |
|
77 |
76
|
nfuni |
|
78 |
77
|
nfcri |
|
79 |
74 78
|
nfan |
|
80 |
|
nfv |
|
81 |
62
|
a1i |
|
82 |
8
|
reseq1i |
|
83 |
|
ioossicc |
|
84 |
83 14
|
sstrid |
|
85 |
84
|
resmptd |
|
86 |
82 85
|
eqtrid |
|
87 |
17 86
|
eqtr4id |
|
88 |
87
|
oveq2d |
|
89 |
|
ax-resscn |
|
90 |
89
|
a1i |
|
91 |
1
|
adantr |
|
92 |
2
|
adantr |
|
93 |
3 4
|
iccssred |
|
94 |
93
|
sselda |
|
95 |
92 94
|
readdcld |
|
96 |
91 95
|
ffvelcdmd |
|
97 |
96
|
recnd |
|
98 |
7
|
recnd |
|
99 |
98
|
adantr |
|
100 |
97 99
|
subcld |
|
101 |
|
2cnd |
|
102 |
93 90
|
sstrd |
|
103 |
102
|
sselda |
|
104 |
103
|
halfcld |
|
105 |
104
|
sincld |
|
106 |
101 105
|
mulcld |
|
107 |
|
2ne0 |
|
108 |
107
|
a1i |
|
109 |
5
|
sselda |
|
110 |
|
eqcom |
|
111 |
110
|
biimpi |
|
112 |
111
|
adantl |
|
113 |
|
simpl |
|
114 |
112 113
|
eqeltrd |
|
115 |
114
|
adantll |
|
116 |
6
|
ad2antrr |
|
117 |
115 116
|
pm2.65da |
|
118 |
117
|
neqned |
|
119 |
|
fourierdlem44 |
|
120 |
109 118 119
|
syl2anc |
|
121 |
101 105 108 120
|
mulne0d |
|
122 |
100 106 121
|
divcld |
|
123 |
122 8
|
fmptd |
|
124 |
|
ioossre |
|
125 |
124
|
a1i |
|
126 |
|
eqid |
|
127 |
126
|
tgioo2 |
|
128 |
126 127
|
dvres |
|
129 |
90 123 93 125 128
|
syl22anc |
|
130 |
|
ioontr |
|
131 |
130
|
reseq2i |
|
132 |
129 131
|
eqtrdi |
|
133 |
132
|
adantr |
|
134 |
88 133
|
eqtr2d |
|
135 |
134
|
dmeqd |
|
136 |
1
|
adantr |
|
137 |
2
|
adantr |
|
138 |
93
|
adantr |
|
139 |
12
|
adantr |
|
140 |
|
elfzofz |
|
141 |
140
|
adantl |
|
142 |
139 141
|
ffvelcdmd |
|
143 |
138 142
|
sseldd |
|
144 |
|
fzofzp1 |
|
145 |
144
|
adantl |
|
146 |
139 145
|
ffvelcdmd |
|
147 |
138 146
|
sseldd |
|
148 |
9
|
feq2i |
|
149 |
16 148
|
sylib |
|
150 |
9
|
reseq2i |
|
151 |
150
|
oveq2i |
|
152 |
151
|
feq1i |
|
153 |
149 152
|
sylib |
|
154 |
5
|
adantr |
|
155 |
84 154
|
sstrd |
|
156 |
6
|
adantr |
|
157 |
84 156
|
ssneldd |
|
158 |
7
|
adantr |
|
159 |
136 137 143 147 153 155 157 158 17
|
fourierdlem57 |
|
160 |
159
|
simpli |
|
161 |
160
|
simpld |
|
162 |
|
fdm |
|
163 |
161 162
|
syl |
|
164 |
135 163
|
eqtr2d |
|
165 |
|
resss |
|
166 |
|
dmss |
|
167 |
165 166
|
mp1i |
|
168 |
164 167
|
eqsstrd |
|
169 |
168
|
3adant3 |
|
170 |
|
simp3 |
|
171 |
169 170
|
sseldd |
|
172 |
81 171
|
ffvelcdmd |
|
173 |
172
|
3exp |
|
174 |
173
|
adantr |
|
175 |
79 80 174
|
rexlimd |
|
176 |
73 175
|
mpd |
|
177 |
66 176
|
jaodan |
|
178 |
45 61 177
|
syl2anc |
|
179 |
178
|
abscld |
|
180 |
44 179
|
sylan2 |
|
181 |
|
id |
|
182 |
181 32
|
eleqtrdi |
|
183 |
|
elsni |
|
184 |
|
simpr |
|
185 |
|
fzfid |
|
186 |
|
rnffi |
|
187 |
12 185 186
|
syl2anc |
|
188 |
|
infi |
|
189 |
187 188
|
syl |
|
190 |
189
|
adantr |
|
191 |
184 190
|
eqeltrd |
|
192 |
|
nfv |
|
193 |
|
nfcv |
|
194 |
|
nfcv |
|
195 |
|
nfcv |
|
196 |
|
nfmpt1 |
|
197 |
8 196
|
nfcxfr |
|
198 |
194 195 197
|
nfov |
|
199 |
198
|
nfdm |
|
200 |
193 199
|
nfin |
|
201 |
200
|
nfeq2 |
|
202 |
192 201
|
nfan |
|
203 |
|
simpr |
|
204 |
|
simpl |
|
205 |
203 204
|
eleqtrd |
|
206 |
205 64
|
syl |
|
207 |
206
|
adantll |
|
208 |
62
|
ffvelcdmi |
|
209 |
208
|
abscld |
|
210 |
207 209
|
syl |
|
211 |
210
|
ex |
|
212 |
202 211
|
ralrimi |
|
213 |
|
fimaxre3 |
|
214 |
191 212 213
|
syl2anc |
|
215 |
183 214
|
sylan2 |
|
216 |
215
|
adantlr |
|
217 |
|
simpll |
|
218 |
|
elunnel1 |
|
219 |
218
|
adantll |
|
220 |
|
vex |
|
221 |
35
|
elrnmpt |
|
222 |
220 221
|
ax-mp |
|
223 |
222
|
biimpi |
|
224 |
223
|
adantl |
|
225 |
76
|
nfcri |
|
226 |
74 225
|
nfan |
|
227 |
|
nfv |
|
228 |
|
reeanv |
|
229 |
10 11 228
|
sylanbrc |
|
230 |
|
simp1 |
|
231 |
|
simp2l |
|
232 |
|
simp2r |
|
233 |
230 231 232
|
jca31 |
|
234 |
|
simp3l |
|
235 |
|
simp3r |
|
236 |
233 234 235
|
jca31 |
|
237 |
236 18
|
sylibr |
|
238 |
18
|
biimpi |
|
239 |
|
simp-5l |
|
240 |
238 239
|
syl |
|
241 |
240 1
|
syl |
|
242 |
240 2
|
syl |
|
243 |
|
simp-4l |
|
244 |
238 243
|
syl |
|
245 |
244 143
|
syl |
|
246 |
244 147
|
syl |
|
247 |
244 13
|
syl |
|
248 |
14 154
|
sstrd |
|
249 |
244 248
|
syl |
|
250 |
14 156
|
ssneldd |
|
251 |
244 250
|
syl |
|
252 |
244 153
|
syl |
|
253 |
|
simp-4r |
|
254 |
238 253
|
syl |
|
255 |
238
|
simplrd |
|
256 |
|
id |
|
257 |
256 9
|
eleqtrrdi |
|
258 |
|
rspa |
|
259 |
255 257 258
|
syl2an |
|
260 |
|
simpllr |
|
261 |
238 260
|
syl |
|
262 |
151
|
fveq1i |
|
263 |
262
|
fveq2i |
|
264 |
238
|
simprd |
|
265 |
264
|
r19.21bi |
|
266 |
263 265
|
eqbrtrrid |
|
267 |
257 266
|
sylan2 |
|
268 |
240 7
|
syl |
|
269 |
241 242 245 246 247 249 251 252 254 259 261 267 268 17
|
fourierdlem68 |
|
270 |
269
|
simprd |
|
271 |
269
|
simpld |
|
272 |
271
|
raleqdv |
|
273 |
272
|
rexbidv |
|
274 |
270 273
|
mpbid |
|
275 |
130
|
eqcomi |
|
276 |
275
|
reseq2i |
|
277 |
276
|
fveq1i |
|
278 |
|
fvres |
|
279 |
278
|
adantl |
|
280 |
244 84
|
syl |
|
281 |
280
|
resmptd |
|
282 |
82 281
|
eqtrid |
|
283 |
17 282
|
eqtr4id |
|
284 |
283
|
oveq2d |
|
285 |
284
|
fveq1d |
|
286 |
129
|
fveq1d |
|
287 |
240 286
|
syl |
|
288 |
285 287
|
eqtr2d |
|
289 |
288
|
adantr |
|
290 |
277 279 289
|
3eqtr3a |
|
291 |
290
|
fveq2d |
|
292 |
291
|
breq1d |
|
293 |
292
|
ralbidva |
|
294 |
293
|
rexbidv |
|
295 |
274 294
|
mpbird |
|
296 |
237 295
|
syl |
|
297 |
296
|
3exp |
|
298 |
297
|
rexlimdvv |
|
299 |
229 298
|
mpd |
|
300 |
299
|
3adant3 |
|
301 |
|
raleq |
|
302 |
301
|
3ad2ant3 |
|
303 |
302
|
rexbidv |
|
304 |
300 303
|
mpbird |
|
305 |
304
|
3exp |
|
306 |
305
|
adantr |
|
307 |
226 227 306
|
rexlimd |
|
308 |
224 307
|
mpd |
|
309 |
217 219 308
|
syl2anc |
|
310 |
216 309
|
pm2.61dan |
|
311 |
182 310
|
sylan2 |
|
312 |
|
pm3.22 |
|
313 |
|
elin |
|
314 |
312 313
|
sylibr |
|
315 |
314
|
adantll |
|
316 |
57
|
eqcomd |
|
317 |
316
|
ad2antrr |
|
318 |
315 317
|
eleqtrd |
|
319 |
318
|
orcd |
|
320 |
|
simpll |
|
321 |
89
|
a1i |
|
322 |
123
|
adantr |
|
323 |
3
|
adantr |
|
324 |
4
|
adantr |
|
325 |
323 324
|
iccssred |
|
326 |
321 322 325
|
dvbss |
|
327 |
|
simpr |
|
328 |
326 327
|
sseldd |
|
329 |
328
|
adantr |
|
330 |
|
simpr |
|
331 |
|
fveq2 |
|
332 |
|
oveq1 |
|
333 |
332
|
fveq2d |
|
334 |
331 333
|
oveq12d |
|
335 |
|
ovex |
|
336 |
334 35 335
|
fvmpt |
|
337 |
336
|
eleq2d |
|
338 |
337
|
rexbiia |
|
339 |
15 338
|
sylibr |
|
340 |
67 35
|
dmmpti |
|
341 |
340
|
rexeqi |
|
342 |
339 341
|
sylibr |
|
343 |
320 329 330 342
|
syl21anc |
|
344 |
|
funmpt |
|
345 |
|
elunirn |
|
346 |
344 345
|
mp1i |
|
347 |
343 346
|
mpbird |
|
348 |
347
|
olcd |
|
349 |
319 348
|
pm2.61dan |
|
350 |
|
elun |
|
351 |
349 350
|
sylibr |
|
352 |
351 46
|
eleqtrrdi |
|
353 |
352
|
ralrimiva |
|
354 |
|
dfss3 |
|
355 |
353 354
|
sylibr |
|
356 |
355 43
|
sseqtrrdi |
|
357 |
41 180 311 356
|
ssfiunibd |
|