Metamath Proof Explorer


Theorem fourierdlem80

Description: The derivative of O is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem80.f φ F :
fourierdlem80.xre φ X
fourierdlem80.a φ A
fourierdlem80.b φ B
fourierdlem80.ab φ A B π π
fourierdlem80.n0 φ ¬ 0 A B
fourierdlem80.c φ C
fourierdlem80.o O = s A B F X + s C 2 sin s 2
fourierdlem80.i I = X + S j X + S j + 1
fourierdlem80.fbdioo φ j 0 ..^ N w t I F t w
fourierdlem80.fdvbdioo φ j 0 ..^ N z t I F I t z
fourierdlem80.sf φ S : 0 N A B
fourierdlem80.slt φ j 0 ..^ N S j < S j + 1
fourierdlem80.sjss φ j 0 ..^ N S j S j + 1 A B
fourierdlem80.relioo φ r A B ¬ r ran S k 0 ..^ N r S k S k + 1
fdv φ j 0 ..^ N F I : I
fourierdlem80.y Y = s S j S j + 1 F X + s C 2 sin s 2
fourierdlem80.ch χ φ j 0 ..^ N w z t I F t w t I F I t z
Assertion fourierdlem80 φ b s dom O O s b

Proof

Step Hyp Ref Expression
1 fourierdlem80.f φ F :
2 fourierdlem80.xre φ X
3 fourierdlem80.a φ A
4 fourierdlem80.b φ B
5 fourierdlem80.ab φ A B π π
6 fourierdlem80.n0 φ ¬ 0 A B
7 fourierdlem80.c φ C
8 fourierdlem80.o O = s A B F X + s C 2 sin s 2
9 fourierdlem80.i I = X + S j X + S j + 1
10 fourierdlem80.fbdioo φ j 0 ..^ N w t I F t w
11 fourierdlem80.fdvbdioo φ j 0 ..^ N z t I F I t z
12 fourierdlem80.sf φ S : 0 N A B
13 fourierdlem80.slt φ j 0 ..^ N S j < S j + 1
14 fourierdlem80.sjss φ j 0 ..^ N S j S j + 1 A B
15 fourierdlem80.relioo φ r A B ¬ r ran S k 0 ..^ N r S k S k + 1
16 fdv φ j 0 ..^ N F I : I
17 fourierdlem80.y Y = s S j S j + 1 F X + s C 2 sin s 2
18 fourierdlem80.ch χ φ j 0 ..^ N w z t I F t w t I F I t z
19 oveq2 s = t X + s = X + t
20 19 fveq2d s = t F X + s = F X + t
21 20 oveq1d s = t F X + s C = F X + t C
22 oveq1 s = t s 2 = t 2
23 22 fveq2d s = t sin s 2 = sin t 2
24 23 oveq2d s = t 2 sin s 2 = 2 sin t 2
25 21 24 oveq12d s = t F X + s C 2 sin s 2 = F X + t C 2 sin t 2
26 25 cbvmptv s A B F X + s C 2 sin s 2 = t A B F X + t C 2 sin t 2
27 8 26 eqtr2i t A B F X + t C 2 sin t 2 = O
28 27 oveq2i dt A B F X + t C 2 sin t 2 d t = D O
29 28 dmeqi dom dt A B F X + t C 2 sin t 2 d t = dom O
30 29 ineq2i ran S dom dt A B F X + t C 2 sin t 2 d t = ran S dom O
31 30 sneqi ran S dom dt A B F X + t C 2 sin t 2 d t = ran S dom O
32 31 uneq1i ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
33 snfi ran S dom O Fin
34 fzofi 0 ..^ N Fin
35 eqid j 0 ..^ N S j S j + 1 = j 0 ..^ N S j S j + 1
36 35 rnmptfi 0 ..^ N Fin ran j 0 ..^ N S j S j + 1 Fin
37 34 36 ax-mp ran j 0 ..^ N S j S j + 1 Fin
38 unfi ran S dom O Fin ran j 0 ..^ N S j S j + 1 Fin ran S dom O ran j 0 ..^ N S j S j + 1 Fin
39 33 37 38 mp2an ran S dom O ran j 0 ..^ N S j S j + 1 Fin
40 39 a1i φ ran S dom O ran j 0 ..^ N S j S j + 1 Fin
41 32 40 eqeltrid φ ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 Fin
42 id s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
43 32 unieqi ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
44 42 43 eleqtrdi s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 s ran S dom O ran j 0 ..^ N S j S j + 1
45 simpl φ s ran S dom O ran j 0 ..^ N S j S j + 1 φ
46 uniun ran S dom O ran j 0 ..^ N S j S j + 1 = ran S dom O ran j 0 ..^ N S j S j + 1
47 46 eleq2i s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O ran j 0 ..^ N S j S j + 1
48 elun s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
49 47 48 sylbb s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
50 49 adantl φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
51 ovex 0 N V
52 51 a1i φ 0 N V
53 12 52 fexd φ S V
54 rnexg S V ran S V
55 53 54 syl φ ran S V
56 inex1g ran S V ran S dom O V
57 55 56 syl φ ran S dom O V
58 unisng ran S dom O V ran S dom O = ran S dom O
59 57 58 syl φ ran S dom O = ran S dom O
60 59 eleq2d φ s ran S dom O s ran S dom O
61 60 adantr φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran S dom O
62 61 orbi1d φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
63 50 62 mpbid φ s ran S dom O ran j 0 ..^ N S j S j + 1 s ran S dom O s ran j 0 ..^ N S j S j + 1
64 dvf O : dom O
65 64 a1i s ran S dom O O : dom O
66 elinel2 s ran S dom O s dom O
67 65 66 ffvelrnd s ran S dom O O s
68 67 adantl φ s ran S dom O O s
69 ovex S j S j + 1 V
70 69 dfiun3 j 0 ..^ N S j S j + 1 = ran j 0 ..^ N S j S j + 1
71 70 eleq2i s j 0 ..^ N S j S j + 1 s ran j 0 ..^ N S j S j + 1
72 71 biimpri s ran j 0 ..^ N S j S j + 1 s j 0 ..^ N S j S j + 1
73 72 adantl φ s ran j 0 ..^ N S j S j + 1 s j 0 ..^ N S j S j + 1
74 eliun s j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1
75 73 74 sylib φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1
76 nfv j φ
77 nfmpt1 _ j j 0 ..^ N S j S j + 1
78 77 nfrn _ j ran j 0 ..^ N S j S j + 1
79 78 nfuni _ j ran j 0 ..^ N S j S j + 1
80 79 nfcri j s ran j 0 ..^ N S j S j + 1
81 76 80 nfan j φ s ran j 0 ..^ N S j S j + 1
82 nfv j O s
83 64 a1i φ j 0 ..^ N s S j S j + 1 O : dom O
84 8 reseq1i O S j S j + 1 = s A B F X + s C 2 sin s 2 S j S j + 1
85 ioossicc S j S j + 1 S j S j + 1
86 85 14 sstrid φ j 0 ..^ N S j S j + 1 A B
87 86 resmptd φ j 0 ..^ N s A B F X + s C 2 sin s 2 S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
88 84 87 eqtrid φ j 0 ..^ N O S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
89 17 88 eqtr4id φ j 0 ..^ N Y = O S j S j + 1
90 89 oveq2d φ j 0 ..^ N D Y = D O S j S j + 1
91 ax-resscn
92 91 a1i φ
93 1 adantr φ s A B F :
94 2 adantr φ s A B X
95 3 4 iccssred φ A B
96 95 sselda φ s A B s
97 94 96 readdcld φ s A B X + s
98 93 97 ffvelrnd φ s A B F X + s
99 98 recnd φ s A B F X + s
100 7 recnd φ C
101 100 adantr φ s A B C
102 99 101 subcld φ s A B F X + s C
103 2cnd φ s A B 2
104 95 92 sstrd φ A B
105 104 sselda φ s A B s
106 105 halfcld φ s A B s 2
107 106 sincld φ s A B sin s 2
108 103 107 mulcld φ s A B 2 sin s 2
109 2ne0 2 0
110 109 a1i φ s A B 2 0
111 5 sselda φ s A B s π π
112 eqcom s = 0 0 = s
113 112 biimpi s = 0 0 = s
114 113 adantl s A B s = 0 0 = s
115 simpl s A B s = 0 s A B
116 114 115 eqeltrd s A B s = 0 0 A B
117 116 adantll φ s A B s = 0 0 A B
118 6 ad2antrr φ s A B s = 0 ¬ 0 A B
119 117 118 pm2.65da φ s A B ¬ s = 0
120 119 neqned φ s A B s 0
121 fourierdlem44 s π π s 0 sin s 2 0
122 111 120 121 syl2anc φ s A B sin s 2 0
123 103 107 110 122 mulne0d φ s A B 2 sin s 2 0
124 102 108 123 divcld φ s A B F X + s C 2 sin s 2
125 124 8 fmptd φ O : A B
126 ioossre S j S j + 1
127 126 a1i φ S j S j + 1
128 eqid TopOpen fld = TopOpen fld
129 128 tgioo2 topGen ran . = TopOpen fld 𝑡
130 128 129 dvres O : A B A B S j S j + 1 D O S j S j + 1 = O int topGen ran . S j S j + 1
131 92 125 95 127 130 syl22anc φ D O S j S j + 1 = O int topGen ran . S j S j + 1
132 ioontr int topGen ran . S j S j + 1 = S j S j + 1
133 132 reseq2i O int topGen ran . S j S j + 1 = O S j S j + 1
134 131 133 eqtrdi φ D O S j S j + 1 = O S j S j + 1
135 134 adantr φ j 0 ..^ N D O S j S j + 1 = O S j S j + 1
136 90 135 eqtr2d φ j 0 ..^ N O S j S j + 1 = D Y
137 136 dmeqd φ j 0 ..^ N dom O S j S j + 1 = dom Y
138 1 adantr φ j 0 ..^ N F :
139 2 adantr φ j 0 ..^ N X
140 95 adantr φ j 0 ..^ N A B
141 12 adantr φ j 0 ..^ N S : 0 N A B
142 elfzofz j 0 ..^ N j 0 N
143 142 adantl φ j 0 ..^ N j 0 N
144 141 143 ffvelrnd φ j 0 ..^ N S j A B
145 140 144 sseldd φ j 0 ..^ N S j
146 fzofzp1 j 0 ..^ N j + 1 0 N
147 146 adantl φ j 0 ..^ N j + 1 0 N
148 141 147 ffvelrnd φ j 0 ..^ N S j + 1 A B
149 140 148 sseldd φ j 0 ..^ N S j + 1
150 9 feq2i F I : I F I : X + S j X + S j + 1
151 16 150 sylib φ j 0 ..^ N F I : X + S j X + S j + 1
152 9 reseq2i F I = F X + S j X + S j + 1
153 152 oveq2i D F I = D F X + S j X + S j + 1
154 153 feq1i F I : X + S j X + S j + 1 F X + S j X + S j + 1 : X + S j X + S j + 1
155 151 154 sylib φ j 0 ..^ N F X + S j X + S j + 1 : X + S j X + S j + 1
156 5 adantr φ j 0 ..^ N A B π π
157 86 156 sstrd φ j 0 ..^ N S j S j + 1 π π
158 6 adantr φ j 0 ..^ N ¬ 0 A B
159 86 158 ssneldd φ j 0 ..^ N ¬ 0 S j S j + 1
160 7 adantr φ j 0 ..^ N C
161 138 139 145 149 155 157 159 160 17 fourierdlem57 φ j 0 ..^ N Y : S j S j + 1 D Y = s S j S j + 1 F X + S j X + S j + 1 X + s 2 sin s 2 cos s 2 F X + s C 2 sin s 2 2 ds S j S j + 1 2 sin s 2 d s = s S j S j + 1 cos s 2
162 161 simpli φ j 0 ..^ N Y : S j S j + 1 D Y = s S j S j + 1 F X + S j X + S j + 1 X + s 2 sin s 2 cos s 2 F X + s C 2 sin s 2 2
163 162 simpld φ j 0 ..^ N Y : S j S j + 1
164 fdm Y : S j S j + 1 dom Y = S j S j + 1
165 163 164 syl φ j 0 ..^ N dom Y = S j S j + 1
166 137 165 eqtr2d φ j 0 ..^ N S j S j + 1 = dom O S j S j + 1
167 resss O S j S j + 1 D O
168 dmss O S j S j + 1 D O dom O S j S j + 1 dom O
169 167 168 mp1i φ j 0 ..^ N dom O S j S j + 1 dom O
170 166 169 eqsstrd φ j 0 ..^ N S j S j + 1 dom O
171 170 3adant3 φ j 0 ..^ N s S j S j + 1 S j S j + 1 dom O
172 simp3 φ j 0 ..^ N s S j S j + 1 s S j S j + 1
173 171 172 sseldd φ j 0 ..^ N s S j S j + 1 s dom O
174 83 173 ffvelrnd φ j 0 ..^ N s S j S j + 1 O s
175 174 3exp φ j 0 ..^ N s S j S j + 1 O s
176 175 adantr φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1 O s
177 81 82 176 rexlimd φ s ran j 0 ..^ N S j S j + 1 j 0 ..^ N s S j S j + 1 O s
178 75 177 mpd φ s ran j 0 ..^ N S j S j + 1 O s
179 68 178 jaodan φ s ran S dom O s ran j 0 ..^ N S j S j + 1 O s
180 45 63 179 syl2anc φ s ran S dom O ran j 0 ..^ N S j S j + 1 O s
181 180 abscld φ s ran S dom O ran j 0 ..^ N S j S j + 1 O s
182 44 181 sylan2 φ s ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 O s
183 id r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
184 183 32 eleqtrdi r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 r ran S dom O ran j 0 ..^ N S j S j + 1
185 elsni r ran S dom O r = ran S dom O
186 simpr φ r = ran S dom O r = ran S dom O
187 fzfid φ 0 N Fin
188 rnffi S : 0 N A B 0 N Fin ran S Fin
189 12 187 188 syl2anc φ ran S Fin
190 infi ran S Fin ran S dom O Fin
191 189 190 syl φ ran S dom O Fin
192 191 adantr φ r = ran S dom O ran S dom O Fin
193 186 192 eqeltrd φ r = ran S dom O r Fin
194 nfv s φ
195 nfcv _ s ran S
196 nfcv _ s
197 nfcv _ s D
198 nfmpt1 _ s s A B F X + s C 2 sin s 2
199 8 198 nfcxfr _ s O
200 196 197 199 nfov _ s O
201 200 nfdm _ s dom O
202 195 201 nfin _ s ran S dom O
203 202 nfeq2 s r = ran S dom O
204 194 203 nfan s φ r = ran S dom O
205 simpr r = ran S dom O s r s r
206 simpl r = ran S dom O s r r = ran S dom O
207 205 206 eleqtrd r = ran S dom O s r s ran S dom O
208 207 66 syl r = ran S dom O s r s dom O
209 208 adantll φ r = ran S dom O s r s dom O
210 64 ffvelrni s dom O O s
211 210 abscld s dom O O s
212 209 211 syl φ r = ran S dom O s r O s
213 212 ex φ r = ran S dom O s r O s
214 204 213 ralrimi φ r = ran S dom O s r O s
215 fimaxre3 r Fin s r O s y s r O s y
216 193 214 215 syl2anc φ r = ran S dom O y s r O s y
217 185 216 sylan2 φ r ran S dom O y s r O s y
218 217 adantlr φ r ran S dom O ran j 0 ..^ N S j S j + 1 r ran S dom O y s r O s y
219 simpll φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O φ
220 elunnel1 r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O r ran j 0 ..^ N S j S j + 1
221 220 adantll φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O r ran j 0 ..^ N S j S j + 1
222 vex r V
223 35 elrnmpt r V r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
224 222 223 ax-mp r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
225 224 biimpi r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
226 225 adantl φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1
227 78 nfcri j r ran j 0 ..^ N S j S j + 1
228 76 227 nfan j φ r ran j 0 ..^ N S j S j + 1
229 nfv j y s r O s y
230 reeanv w z t I F t w t I F I t z w t I F t w z t I F I t z
231 10 11 230 sylanbrc φ j 0 ..^ N w z t I F t w t I F I t z
232 simp1 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N
233 simp2l φ j 0 ..^ N w z t I F t w t I F I t z w
234 simp2r φ j 0 ..^ N w z t I F t w t I F I t z z
235 232 233 234 jca31 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N w z
236 simp3l φ j 0 ..^ N w z t I F t w t I F I t z t I F t w
237 simp3r φ j 0 ..^ N w z t I F t w t I F I t z t I F I t z
238 235 236 237 jca31 φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N w z t I F t w t I F I t z
239 238 18 sylibr φ j 0 ..^ N w z t I F t w t I F I t z χ
240 18 biimpi χ φ j 0 ..^ N w z t I F t w t I F I t z
241 simp-5l φ j 0 ..^ N w z t I F t w t I F I t z φ
242 240 241 syl χ φ
243 242 1 syl χ F :
244 242 2 syl χ X
245 simp-4l φ j 0 ..^ N w z t I F t w t I F I t z φ j 0 ..^ N
246 240 245 syl χ φ j 0 ..^ N
247 246 145 syl χ S j
248 246 149 syl χ S j + 1
249 246 13 syl χ S j < S j + 1
250 14 156 sstrd φ j 0 ..^ N S j S j + 1 π π
251 246 250 syl χ S j S j + 1 π π
252 14 158 ssneldd φ j 0 ..^ N ¬ 0 S j S j + 1
253 246 252 syl χ ¬ 0 S j S j + 1
254 246 155 syl χ F X + S j X + S j + 1 : X + S j X + S j + 1
255 simp-4r φ j 0 ..^ N w z t I F t w t I F I t z w
256 240 255 syl χ w
257 240 simplrd χ t I F t w
258 id t X + S j X + S j + 1 t X + S j X + S j + 1
259 258 9 eleqtrrdi t X + S j X + S j + 1 t I
260 rspa t I F t w t I F t w
261 257 259 260 syl2an χ t X + S j X + S j + 1 F t w
262 simpllr φ j 0 ..^ N w z t I F t w t I F I t z z
263 240 262 syl χ z
264 153 fveq1i F I t = F X + S j X + S j + 1 t
265 264 fveq2i F I t = F X + S j X + S j + 1 t
266 240 simprd χ t I F I t z
267 266 r19.21bi χ t I F I t z
268 265 267 eqbrtrrid χ t I F X + S j X + S j + 1 t z
269 259 268 sylan2 χ t X + S j X + S j + 1 F X + S j X + S j + 1 t z
270 242 7 syl χ C
271 243 244 247 248 249 251 253 254 256 261 263 269 270 17 fourierdlem68 χ dom Y = S j S j + 1 y s dom Y Y s y
272 271 simprd χ y s dom Y Y s y
273 271 simpld χ dom Y = S j S j + 1
274 273 raleqdv χ s dom Y Y s y s S j S j + 1 Y s y
275 274 rexbidv χ y s dom Y Y s y y s S j S j + 1 Y s y
276 272 275 mpbid χ y s S j S j + 1 Y s y
277 132 eqcomi S j S j + 1 = int topGen ran . S j S j + 1
278 277 reseq2i O S j S j + 1 = O int topGen ran . S j S j + 1
279 278 fveq1i O S j S j + 1 s = O int topGen ran . S j S j + 1 s
280 fvres s S j S j + 1 O S j S j + 1 s = O s
281 280 adantl χ s S j S j + 1 O S j S j + 1 s = O s
282 246 86 syl χ S j S j + 1 A B
283 282 resmptd χ s A B F X + s C 2 sin s 2 S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
284 84 283 eqtrid χ O S j S j + 1 = s S j S j + 1 F X + s C 2 sin s 2
285 17 284 eqtr4id χ Y = O S j S j + 1
286 285 oveq2d χ D Y = D O S j S j + 1
287 286 fveq1d χ Y s = O S j S j + 1 s
288 131 fveq1d φ O S j S j + 1 s = O int topGen ran . S j S j + 1 s
289 242 288 syl χ O S j S j + 1 s = O int topGen ran . S j S j + 1 s
290 287 289 eqtr2d χ O int topGen ran . S j S j + 1 s = Y s
291 290 adantr χ s S j S j + 1 O int topGen ran . S j S j + 1 s = Y s
292 279 281 291 3eqtr3a χ s S j S j + 1 O s = Y s
293 292 fveq2d χ s S j S j + 1 O s = Y s
294 293 breq1d χ s S j S j + 1 O s y Y s y
295 294 ralbidva χ s S j S j + 1 O s y s S j S j + 1 Y s y
296 295 rexbidv χ y s S j S j + 1 O s y y s S j S j + 1 Y s y
297 276 296 mpbird χ y s S j S j + 1 O s y
298 239 297 syl φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
299 298 3exp φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
300 299 rexlimdvv φ j 0 ..^ N w z t I F t w t I F I t z y s S j S j + 1 O s y
301 231 300 mpd φ j 0 ..^ N y s S j S j + 1 O s y
302 301 3adant3 φ j 0 ..^ N r = S j S j + 1 y s S j S j + 1 O s y
303 raleq r = S j S j + 1 s r O s y s S j S j + 1 O s y
304 303 3ad2ant3 φ j 0 ..^ N r = S j S j + 1 s r O s y s S j S j + 1 O s y
305 304 rexbidv φ j 0 ..^ N r = S j S j + 1 y s r O s y y s S j S j + 1 O s y
306 302 305 mpbird φ j 0 ..^ N r = S j S j + 1 y s r O s y
307 306 3exp φ j 0 ..^ N r = S j S j + 1 y s r O s y
308 307 adantr φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1 y s r O s y
309 228 229 308 rexlimd φ r ran j 0 ..^ N S j S j + 1 j 0 ..^ N r = S j S j + 1 y s r O s y
310 226 309 mpd φ r ran j 0 ..^ N S j S j + 1 y s r O s y
311 219 221 310 syl2anc φ r ran S dom O ran j 0 ..^ N S j S j + 1 ¬ r ran S dom O y s r O s y
312 218 311 pm2.61dan φ r ran S dom O ran j 0 ..^ N S j S j + 1 y s r O s y
313 184 312 sylan2 φ r ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1 y s r O s y
314 pm3.22 r dom O r ran S r ran S r dom O
315 elin r ran S dom O r ran S r dom O
316 314 315 sylibr r dom O r ran S r ran S dom O
317 316 adantll φ r dom O r ran S r ran S dom O
318 59 eqcomd φ ran S dom O = ran S dom O
319 318 ad2antrr φ r dom O r ran S ran S dom O = ran S dom O
320 317 319 eleqtrd φ r dom O r ran S r ran S dom O
321 320 orcd φ r dom O r ran S r ran S dom O r ran j 0 ..^ N S j S j + 1
322 simpll φ r dom O ¬ r ran S φ
323 91 a1i φ r dom O
324 125 adantr φ r dom O O : A B
325 3 adantr φ r dom O A
326 4 adantr φ r dom O B
327 325 326 iccssred φ r dom O A B
328 323 324 327 dvbss φ r dom O dom O A B
329 simpr φ r dom O r dom O
330 328 329 sseldd φ r dom O r A B
331 330 adantr φ r dom O ¬ r ran S r A B
332 simpr φ r dom O ¬ r ran S ¬ r ran S
333 fveq2 j = k S j = S k
334 oveq1 j = k j + 1 = k + 1
335 334 fveq2d j = k S j + 1 = S k + 1
336 333 335 oveq12d j = k S j S j + 1 = S k S k + 1
337 ovex S k S k + 1 V
338 336 35 337 fvmpt k 0 ..^ N j 0 ..^ N S j S j + 1 k = S k S k + 1
339 338 eleq2d k 0 ..^ N r j 0 ..^ N S j S j + 1 k r S k S k + 1
340 339 rexbiia k 0 ..^ N r j 0 ..^ N S j S j + 1 k k 0 ..^ N r S k S k + 1
341 15 340 sylibr φ r A B ¬ r ran S k 0 ..^ N r j 0 ..^ N S j S j + 1 k
342 69 35 dmmpti dom j 0 ..^ N S j S j + 1 = 0 ..^ N
343 342 rexeqi k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k k 0 ..^ N r j 0 ..^ N S j S j + 1 k
344 341 343 sylibr φ r A B ¬ r ran S k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
345 322 331 332 344 syl21anc φ r dom O ¬ r ran S k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
346 funmpt Fun j 0 ..^ N S j S j + 1
347 elunirn Fun j 0 ..^ N S j S j + 1 r ran j 0 ..^ N S j S j + 1 k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
348 346 347 mp1i φ r dom O ¬ r ran S r ran j 0 ..^ N S j S j + 1 k dom j 0 ..^ N S j S j + 1 r j 0 ..^ N S j S j + 1 k
349 345 348 mpbird φ r dom O ¬ r ran S r ran j 0 ..^ N S j S j + 1
350 349 olcd φ r dom O ¬ r ran S r ran S dom O r ran j 0 ..^ N S j S j + 1
351 321 350 pm2.61dan φ r dom O r ran S dom O r ran j 0 ..^ N S j S j + 1
352 elun r ran S dom O ran j 0 ..^ N S j S j + 1 r ran S dom O r ran j 0 ..^ N S j S j + 1
353 351 352 sylibr φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
354 353 46 eleqtrrdi φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
355 354 ralrimiva φ r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
356 dfss3 dom O ran S dom O ran j 0 ..^ N S j S j + 1 r dom O r ran S dom O ran j 0 ..^ N S j S j + 1
357 355 356 sylibr φ dom O ran S dom O ran j 0 ..^ N S j S j + 1
358 357 43 sseqtrrdi φ dom O ran S dom dt A B F X + t C 2 sin t 2 d t ran j 0 ..^ N S j S j + 1
359 41 182 313 358 ssfiunibd φ b s dom O O s b