Metamath Proof Explorer


Theorem fourierdlem81

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by its period T . In this lemma, T is assumed to be strictly positive. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem81.a φ A
fourierdlem81.b φ B
fourierdlem81.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem81.m φ M
fourierdlem81.t φ T +
fourierdlem81.q φ Q P M
fourierdlem81.fper φ x A B F x + T = F x
fourierdlem81.s S = i 0 M Q i + T
fourierdlem81.f φ F :
fourierdlem81.cncf φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem81.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem81.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem81.g G = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F x
fourierdlem81.h H = x S i S i + 1 G x T
Assertion fourierdlem81 φ A + T B + T F x dx = A B F x dx

Proof

Step Hyp Ref Expression
1 fourierdlem81.a φ A
2 fourierdlem81.b φ B
3 fourierdlem81.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
4 fourierdlem81.m φ M
5 fourierdlem81.t φ T +
6 fourierdlem81.q φ Q P M
7 fourierdlem81.fper φ x A B F x + T = F x
8 fourierdlem81.s S = i 0 M Q i + T
9 fourierdlem81.f φ F :
10 fourierdlem81.cncf φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
11 fourierdlem81.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
12 fourierdlem81.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
13 fourierdlem81.g G = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F x
14 fourierdlem81.h H = x S i S i + 1 G x T
15 3 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
16 4 15 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
17 6 16 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
18 17 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
19 18 simpld φ Q 0 = A Q M = B
20 19 simpld φ Q 0 = A
21 20 eqcomd φ A = Q 0
22 19 simprd φ Q M = B
23 22 eqcomd φ B = Q M
24 21 23 oveq12d φ A B = Q 0 Q M
25 24 itgeq1d φ A B F x dx = Q 0 Q M F x dx
26 0zd φ 0
27 nnuz = 1
28 0p1e1 0 + 1 = 1
29 28 fveq2i 0 + 1 = 1
30 27 29 eqtr4i = 0 + 1
31 4 30 eleqtrdi φ M 0 + 1
32 17 simpld φ Q 0 M
33 reex V
34 33 a1i φ V
35 ovex 0 M V
36 35 a1i φ 0 M V
37 34 36 elmapd φ Q 0 M Q : 0 M
38 32 37 mpbid φ Q : 0 M
39 18 simprd φ i 0 ..^ M Q i < Q i + 1
40 39 r19.21bi φ i 0 ..^ M Q i < Q i + 1
41 9 adantr φ x Q 0 Q M F :
42 20 1 eqeltrd φ Q 0
43 22 2 eqeltrd φ Q M
44 42 43 iccssred φ Q 0 Q M
45 44 sselda φ x Q 0 Q M x
46 41 45 ffvelrnd φ x Q 0 Q M F x
47 38 adantr φ i 0 ..^ M Q : 0 M
48 elfzofz i 0 ..^ M i 0 M
49 48 adantl φ i 0 ..^ M i 0 M
50 47 49 ffvelrnd φ i 0 ..^ M Q i
51 fzofzp1 i 0 ..^ M i + 1 0 M
52 51 adantl φ i 0 ..^ M i + 1 0 M
53 47 52 ffvelrnd φ i 0 ..^ M Q i + 1
54 9 feqmptd φ F = x F x
55 54 reseq1d φ F Q i Q i + 1 = x F x Q i Q i + 1
56 55 adantr φ i 0 ..^ M F Q i Q i + 1 = x F x Q i Q i + 1
57 ioossre Q i Q i + 1
58 57 a1i φ i 0 ..^ M Q i Q i + 1
59 58 resmptd φ i 0 ..^ M x F x Q i Q i + 1 = x Q i Q i + 1 F x
60 56 59 eqtr2d φ i 0 ..^ M x Q i Q i + 1 F x = F Q i Q i + 1
61 50 53 10 12 11 iblcncfioo φ i 0 ..^ M F Q i Q i + 1 𝐿 1
62 60 61 eqeltrd φ i 0 ..^ M x Q i Q i + 1 F x 𝐿 1
63 9 ad2antrr φ i 0 ..^ M x Q i Q i + 1 F :
64 50 53 iccssred φ i 0 ..^ M Q i Q i + 1
65 64 sselda φ i 0 ..^ M x Q i Q i + 1 x
66 63 65 ffvelrnd φ i 0 ..^ M x Q i Q i + 1 F x
67 50 53 62 66 ibliooicc φ i 0 ..^ M x Q i Q i + 1 F x 𝐿 1
68 26 31 38 40 46 67 itgspltprt φ Q 0 Q M F x dx = i 0 ..^ M Q i Q i + 1 F x dx
69 8 a1i φ S = i 0 M Q i + T
70 fveq2 i = 0 Q i = Q 0
71 70 oveq1d i = 0 Q i + T = Q 0 + T
72 71 adantl φ i = 0 Q i + T = Q 0 + T
73 4 nnnn0d φ M 0
74 nn0uz 0 = 0
75 73 74 eleqtrdi φ M 0
76 eluzfz1 M 0 0 0 M
77 75 76 syl φ 0 0 M
78 5 rpred φ T
79 42 78 readdcld φ Q 0 + T
80 69 72 77 79 fvmptd φ S 0 = Q 0 + T
81 20 oveq1d φ Q 0 + T = A + T
82 80 81 eqtr2d φ A + T = S 0
83 fveq2 i = M Q i = Q M
84 83 oveq1d i = M Q i + T = Q M + T
85 84 adantl φ i = M Q i + T = Q M + T
86 eluzfz2 M 0 M 0 M
87 75 86 syl φ M 0 M
88 43 78 readdcld φ Q M + T
89 69 85 87 88 fvmptd φ S M = Q M + T
90 22 oveq1d φ Q M + T = B + T
91 89 90 eqtr2d φ B + T = S M
92 82 91 oveq12d φ A + T B + T = S 0 S M
93 92 itgeq1d φ A + T B + T F x dx = S 0 S M F x dx
94 38 ffvelrnda φ i 0 M Q i
95 78 adantr φ i 0 M T
96 94 95 readdcld φ i 0 M Q i + T
97 96 8 fmptd φ S : 0 M
98 78 adantr φ i 0 ..^ M T
99 50 53 98 40 ltadd1dd φ i 0 ..^ M Q i + T < Q i + 1 + T
100 48 96 sylan2 φ i 0 ..^ M Q i + T
101 8 fvmpt2 i 0 M Q i + T S i = Q i + T
102 49 100 101 syl2anc φ i 0 ..^ M S i = Q i + T
103 fveq2 i = j Q i = Q j
104 103 oveq1d i = j Q i + T = Q j + T
105 104 cbvmptv i 0 M Q i + T = j 0 M Q j + T
106 8 105 eqtri S = j 0 M Q j + T
107 106 a1i φ i 0 ..^ M S = j 0 M Q j + T
108 fveq2 j = i + 1 Q j = Q i + 1
109 108 oveq1d j = i + 1 Q j + T = Q i + 1 + T
110 109 adantl φ i 0 ..^ M j = i + 1 Q j + T = Q i + 1 + T
111 53 98 readdcld φ i 0 ..^ M Q i + 1 + T
112 107 110 52 111 fvmptd φ i 0 ..^ M S i + 1 = Q i + 1 + T
113 99 102 112 3brtr4d φ i 0 ..^ M S i < S i + 1
114 9 adantr φ x S 0 S M F :
115 80 79 eqeltrd φ S 0
116 115 adantr φ x S 0 S M S 0
117 89 88 eqeltrd φ S M
118 117 adantr φ x S 0 S M S M
119 116 118 iccssred φ x S 0 S M S 0 S M
120 simpr φ x S 0 S M x S 0 S M
121 119 120 sseldd φ x S 0 S M x
122 114 121 ffvelrnd φ x S 0 S M F x
123 102 100 eqeltrd φ i 0 ..^ M S i
124 112 111 eqeltrd φ i 0 ..^ M S i + 1
125 ioosscn Q i Q i + 1
126 125 a1i φ i 0 ..^ M Q i Q i + 1
127 eqeq1 w = x w = z + T x = z + T
128 127 rexbidv w = x z Q i Q i + 1 w = z + T z Q i Q i + 1 x = z + T
129 oveq1 z = y z + T = y + T
130 129 eqeq2d z = y x = z + T x = y + T
131 130 cbvrexvw z Q i Q i + 1 x = z + T y Q i Q i + 1 x = y + T
132 128 131 bitrdi w = x z Q i Q i + 1 w = z + T y Q i Q i + 1 x = y + T
133 132 cbvrabv w | z Q i Q i + 1 w = z + T = x | y Q i Q i + 1 x = y + T
134 fdm F : dom F =
135 9 134 syl φ dom F =
136 135 feq2d φ F : dom F F :
137 9 136 mpbird φ F : dom F
138 137 adantr φ i 0 ..^ M F : dom F
139 elioore z Q i Q i + 1 z
140 139 adantl φ z Q i Q i + 1 z
141 78 adantr φ z Q i Q i + 1 T
142 140 141 readdcld φ z Q i Q i + 1 z + T
143 142 adantlr φ i 0 ..^ M z Q i Q i + 1 z + T
144 143 3adant3 φ i 0 ..^ M z Q i Q i + 1 w = z + T z + T
145 simp3 φ i 0 ..^ M z Q i Q i + 1 w = z + T w = z + T
146 135 3ad2ant1 φ z Q i Q i + 1 w = z + T dom F =
147 146 3adant1r φ i 0 ..^ M z Q i Q i + 1 w = z + T dom F =
148 144 145 147 3eltr4d φ i 0 ..^ M z Q i Q i + 1 w = z + T w dom F
149 148 3exp φ i 0 ..^ M z Q i Q i + 1 w = z + T w dom F
150 149 adantr φ i 0 ..^ M w z Q i Q i + 1 w = z + T w dom F
151 150 rexlimdv φ i 0 ..^ M w z Q i Q i + 1 w = z + T w dom F
152 151 ralrimiva φ i 0 ..^ M w z Q i Q i + 1 w = z + T w dom F
153 rabss w | z Q i Q i + 1 w = z + T dom F w z Q i Q i + 1 w = z + T w dom F
154 152 153 sylibr φ i 0 ..^ M w | z Q i Q i + 1 w = z + T dom F
155 simpll φ i 0 ..^ M x Q i Q i + 1 φ
156 1 rexrd φ A *
157 156 ad2antrr φ i 0 ..^ M x Q i Q i + 1 A *
158 2 rexrd φ B *
159 158 ad2antrr φ i 0 ..^ M x Q i Q i + 1 B *
160 3 4 6 fourierdlem15 φ Q : 0 M A B
161 160 ad2antrr φ i 0 ..^ M x Q i Q i + 1 Q : 0 M A B
162 simplr φ i 0 ..^ M x Q i Q i + 1 i 0 ..^ M
163 ioossicc Q i Q i + 1 Q i Q i + 1
164 163 sseli x Q i Q i + 1 x Q i Q i + 1
165 164 adantl φ i 0 ..^ M x Q i Q i + 1 x Q i Q i + 1
166 157 159 161 162 165 fourierdlem1 φ i 0 ..^ M x Q i Q i + 1 x A B
167 155 166 7 syl2anc φ i 0 ..^ M x Q i Q i + 1 F x + T = F x
168 126 98 133 138 154 167 10 cncfperiod φ i 0 ..^ M F w | z Q i Q i + 1 w = z + T : w | z Q i Q i + 1 w = z + T cn
169 128 elrab x w | z Q i Q i + 1 w = z + T x z Q i Q i + 1 x = z + T
170 169 simprbi x w | z Q i Q i + 1 w = z + T z Q i Q i + 1 x = z + T
171 simpr φ i 0 ..^ M z Q i Q i + 1 x = z + T z Q i Q i + 1 x = z + T
172 nfv z φ i 0 ..^ M
173 nfre1 z z Q i Q i + 1 x = z + T
174 172 173 nfan z φ i 0 ..^ M z Q i Q i + 1 x = z + T
175 nfv z x S i < x x < S i + 1
176 simp3 φ z Q i Q i + 1 x = z + T x = z + T
177 142 3adant3 φ z Q i Q i + 1 x = z + T z + T
178 176 177 eqeltrd φ z Q i Q i + 1 x = z + T x
179 178 3adant1r φ i 0 ..^ M z Q i Q i + 1 x = z + T x
180 50 adantr φ i 0 ..^ M z Q i Q i + 1 Q i
181 139 adantl φ i 0 ..^ M z Q i Q i + 1 z
182 78 ad2antrr φ i 0 ..^ M z Q i Q i + 1 T
183 simpr φ i 0 ..^ M z Q i Q i + 1 z Q i Q i + 1
184 50 rexrd φ i 0 ..^ M Q i *
185 184 adantr φ i 0 ..^ M z Q i Q i + 1 Q i *
186 53 rexrd φ i 0 ..^ M Q i + 1 *
187 186 adantr φ i 0 ..^ M z Q i Q i + 1 Q i + 1 *
188 elioo2 Q i * Q i + 1 * z Q i Q i + 1 z Q i < z z < Q i + 1
189 185 187 188 syl2anc φ i 0 ..^ M z Q i Q i + 1 z Q i Q i + 1 z Q i < z z < Q i + 1
190 183 189 mpbid φ i 0 ..^ M z Q i Q i + 1 z Q i < z z < Q i + 1
191 190 simp2d φ i 0 ..^ M z Q i Q i + 1 Q i < z
192 180 181 182 191 ltadd1dd φ i 0 ..^ M z Q i Q i + 1 Q i + T < z + T
193 192 3adant3 φ i 0 ..^ M z Q i Q i + 1 x = z + T Q i + T < z + T
194 102 3ad2ant1 φ i 0 ..^ M z Q i Q i + 1 x = z + T S i = Q i + T
195 simp3 φ i 0 ..^ M z Q i Q i + 1 x = z + T x = z + T
196 193 194 195 3brtr4d φ i 0 ..^ M z Q i Q i + 1 x = z + T S i < x
197 53 adantr φ i 0 ..^ M z Q i Q i + 1 Q i + 1
198 190 simp3d φ i 0 ..^ M z Q i Q i + 1 z < Q i + 1
199 181 197 182 198 ltadd1dd φ i 0 ..^ M z Q i Q i + 1 z + T < Q i + 1 + T
200 199 3adant3 φ i 0 ..^ M z Q i Q i + 1 x = z + T z + T < Q i + 1 + T
201 112 3ad2ant1 φ i 0 ..^ M z Q i Q i + 1 x = z + T S i + 1 = Q i + 1 + T
202 200 195 201 3brtr4d φ i 0 ..^ M z Q i Q i + 1 x = z + T x < S i + 1
203 179 196 202 3jca φ i 0 ..^ M z Q i Q i + 1 x = z + T x S i < x x < S i + 1
204 203 3exp φ i 0 ..^ M z Q i Q i + 1 x = z + T x S i < x x < S i + 1
205 204 adantr φ i 0 ..^ M z Q i Q i + 1 x = z + T z Q i Q i + 1 x = z + T x S i < x x < S i + 1
206 174 175 205 rexlimd φ i 0 ..^ M z Q i Q i + 1 x = z + T z Q i Q i + 1 x = z + T x S i < x x < S i + 1
207 171 206 mpd φ i 0 ..^ M z Q i Q i + 1 x = z + T x S i < x x < S i + 1
208 123 rexrd φ i 0 ..^ M S i *
209 208 adantr φ i 0 ..^ M z Q i Q i + 1 x = z + T S i *
210 124 rexrd φ i 0 ..^ M S i + 1 *
211 210 adantr φ i 0 ..^ M z Q i Q i + 1 x = z + T S i + 1 *
212 elioo2 S i * S i + 1 * x S i S i + 1 x S i < x x < S i + 1
213 209 211 212 syl2anc φ i 0 ..^ M z Q i Q i + 1 x = z + T x S i S i + 1 x S i < x x < S i + 1
214 207 213 mpbird φ i 0 ..^ M z Q i Q i + 1 x = z + T x S i S i + 1
215 170 214 sylan2 φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x S i S i + 1
216 elioore x S i S i + 1 x
217 216 recnd x S i S i + 1 x
218 217 adantl φ i 0 ..^ M x S i S i + 1 x
219 184 adantr φ i 0 ..^ M x S i S i + 1 Q i *
220 186 adantr φ i 0 ..^ M x S i S i + 1 Q i + 1 *
221 216 adantl φ x S i S i + 1 x
222 78 adantr φ x S i S i + 1 T
223 221 222 resubcld φ x S i S i + 1 x T
224 223 adantlr φ i 0 ..^ M x S i S i + 1 x T
225 102 oveq1d φ i 0 ..^ M S i T = Q i + T - T
226 50 recnd φ i 0 ..^ M Q i
227 98 recnd φ i 0 ..^ M T
228 226 227 pncand φ i 0 ..^ M Q i + T - T = Q i
229 225 228 eqtr2d φ i 0 ..^ M Q i = S i T
230 229 adantr φ i 0 ..^ M x S i S i + 1 Q i = S i T
231 123 adantr φ i 0 ..^ M x S i S i + 1 S i
232 216 adantl φ i 0 ..^ M x S i S i + 1 x
233 78 ad2antrr φ i 0 ..^ M x S i S i + 1 T
234 simpr φ i 0 ..^ M x S i S i + 1 x S i S i + 1
235 208 adantr φ i 0 ..^ M x S i S i + 1 S i *
236 210 adantr φ i 0 ..^ M x S i S i + 1 S i + 1 *
237 235 236 212 syl2anc φ i 0 ..^ M x S i S i + 1 x S i S i + 1 x S i < x x < S i + 1
238 234 237 mpbid φ i 0 ..^ M x S i S i + 1 x S i < x x < S i + 1
239 238 simp2d φ i 0 ..^ M x S i S i + 1 S i < x
240 231 232 233 239 ltsub1dd φ i 0 ..^ M x S i S i + 1 S i T < x T
241 230 240 eqbrtrd φ i 0 ..^ M x S i S i + 1 Q i < x T
242 124 adantr φ i 0 ..^ M x S i S i + 1 S i + 1
243 238 simp3d φ i 0 ..^ M x S i S i + 1 x < S i + 1
244 232 242 233 243 ltsub1dd φ i 0 ..^ M x S i S i + 1 x T < S i + 1 T
245 112 oveq1d φ i 0 ..^ M S i + 1 T = Q i + 1 + T - T
246 53 recnd φ i 0 ..^ M Q i + 1
247 246 227 pncand φ i 0 ..^ M Q i + 1 + T - T = Q i + 1
248 245 247 eqtrd φ i 0 ..^ M S i + 1 T = Q i + 1
249 248 adantr φ i 0 ..^ M x S i S i + 1 S i + 1 T = Q i + 1
250 244 249 breqtrd φ i 0 ..^ M x S i S i + 1 x T < Q i + 1
251 219 220 224 241 250 eliood φ i 0 ..^ M x S i S i + 1 x T Q i Q i + 1
252 221 recnd φ x S i S i + 1 x
253 222 recnd φ x S i S i + 1 T
254 252 253 npcand φ x S i S i + 1 x - T + T = x
255 254 eqcomd φ x S i S i + 1 x = x - T + T
256 255 adantlr φ i 0 ..^ M x S i S i + 1 x = x - T + T
257 oveq1 z = x T z + T = x - T + T
258 257 eqeq2d z = x T x = z + T x = x - T + T
259 258 rspcev x T Q i Q i + 1 x = x - T + T z Q i Q i + 1 x = z + T
260 251 256 259 syl2anc φ i 0 ..^ M x S i S i + 1 z Q i Q i + 1 x = z + T
261 218 260 169 sylanbrc φ i 0 ..^ M x S i S i + 1 x w | z Q i Q i + 1 w = z + T
262 215 261 impbida φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x S i S i + 1
263 262 eqrdv φ i 0 ..^ M w | z Q i Q i + 1 w = z + T = S i S i + 1
264 263 reseq2d φ i 0 ..^ M F w | z Q i Q i + 1 w = z + T = F S i S i + 1
265 9 adantr φ i 0 ..^ M F :
266 ioossre S i S i + 1
267 266 a1i φ i 0 ..^ M S i S i + 1
268 265 267 feqresmpt φ i 0 ..^ M F S i S i + 1 = x S i S i + 1 F x
269 264 268 eqtrd φ i 0 ..^ M F w | z Q i Q i + 1 w = z + T = x S i S i + 1 F x
270 263 oveq1d φ i 0 ..^ M w | z Q i Q i + 1 w = z + T cn = S i S i + 1 cn
271 168 269 270 3eltr3d φ i 0 ..^ M x S i S i + 1 F x : S i S i + 1 cn
272 57 135 sseqtrrid φ Q i Q i + 1 dom F
273 272 adantr φ i 0 ..^ M Q i Q i + 1 dom F
274 eqid w | z Q i Q i + 1 w = z + T = w | z Q i Q i + 1 w = z + T
275 simpll φ i 0 ..^ M z Q i Q i + 1 φ
276 156 ad2antrr φ i 0 ..^ M z Q i Q i + 1 A *
277 158 ad2antrr φ i 0 ..^ M z Q i Q i + 1 B *
278 160 ad2antrr φ i 0 ..^ M z Q i Q i + 1 Q : 0 M A B
279 simplr φ i 0 ..^ M z Q i Q i + 1 i 0 ..^ M
280 163 183 sselid φ i 0 ..^ M z Q i Q i + 1 z Q i Q i + 1
281 276 277 278 279 280 fourierdlem1 φ i 0 ..^ M z Q i Q i + 1 z A B
282 eleq1 x = z x A B z A B
283 282 anbi2d x = z φ x A B φ z A B
284 oveq1 x = z x + T = z + T
285 284 fveq2d x = z F x + T = F z + T
286 fveq2 x = z F x = F z
287 285 286 eqeq12d x = z F x + T = F x F z + T = F z
288 283 287 imbi12d x = z φ x A B F x + T = F x φ z A B F z + T = F z
289 288 7 chvarvv φ z A B F z + T = F z
290 275 281 289 syl2anc φ i 0 ..^ M z Q i Q i + 1 F z + T = F z
291 138 126 273 227 274 154 290 12 limcperiod φ i 0 ..^ M L F w | z Q i Q i + 1 w = z + T lim Q i + 1 + T
292 112 eqcomd φ i 0 ..^ M Q i + 1 + T = S i + 1
293 269 292 oveq12d φ i 0 ..^ M F w | z Q i Q i + 1 w = z + T lim Q i + 1 + T = x S i S i + 1 F x lim S i + 1
294 291 293 eleqtrd φ i 0 ..^ M L x S i S i + 1 F x lim S i + 1
295 138 126 273 227 274 154 290 11 limcperiod φ i 0 ..^ M R F w | z Q i Q i + 1 w = z + T lim Q i + T
296 102 eqcomd φ i 0 ..^ M Q i + T = S i
297 269 296 oveq12d φ i 0 ..^ M F w | z Q i Q i + 1 w = z + T lim Q i + T = x S i S i + 1 F x lim S i
298 295 297 eleqtrd φ i 0 ..^ M R x S i S i + 1 F x lim S i
299 123 124 271 294 298 iblcncfioo φ i 0 ..^ M x S i S i + 1 F x 𝐿 1
300 9 ad2antrr φ i 0 ..^ M x S i S i + 1 F :
301 123 adantr φ i 0 ..^ M x S i S i + 1 S i
302 124 adantr φ i 0 ..^ M x S i S i + 1 S i + 1
303 simpr φ i 0 ..^ M x S i S i + 1 x S i S i + 1
304 eliccre S i S i + 1 x S i S i + 1 x
305 301 302 303 304 syl3anc φ i 0 ..^ M x S i S i + 1 x
306 300 305 ffvelrnd φ i 0 ..^ M x S i S i + 1 F x
307 123 124 299 306 ibliooicc φ i 0 ..^ M x S i S i + 1 F x 𝐿 1
308 26 31 97 113 122 307 itgspltprt φ S 0 S M F x dx = i 0 ..^ M S i S i + 1 F x dx
309 iftrue x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = R
310 309 adantl φ i 0 ..^ M x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = R
311 iftrue x = Q i if x = Q i R if x = Q i + 1 L F x = R
312 iftrue x = Q i if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = R
313 311 312 eqtr4d x = Q i if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
314 313 adantl φ i 0 ..^ M x Q i Q i + 1 x = Q i if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
315 iffalse ¬ x = Q i if x = Q i R if x = Q i + 1 L F x = if x = Q i + 1 L F x
316 315 adantr ¬ x = Q i x = Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i + 1 L F x
317 iftrue x = Q i + 1 if x = Q i + 1 L F x = L
318 317 adantl ¬ x = Q i x = Q i + 1 if x = Q i + 1 L F x = L
319 iffalse ¬ x = Q i if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = if x = Q i + 1 L F Q i Q i + 1 x
320 319 adantr ¬ x = Q i x = Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = if x = Q i + 1 L F Q i Q i + 1 x
321 iftrue x = Q i + 1 if x = Q i + 1 L F Q i Q i + 1 x = L
322 321 adantl ¬ x = Q i x = Q i + 1 if x = Q i + 1 L F Q i Q i + 1 x = L
323 320 322 eqtr2d ¬ x = Q i x = Q i + 1 L = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
324 316 318 323 3eqtrd ¬ x = Q i x = Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
325 324 adantll φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i x = Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
326 315 ad2antlr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i + 1 L F x
327 iffalse ¬ x = Q i + 1 if x = Q i + 1 L F x = F x
328 327 adantl φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 if x = Q i + 1 L F x = F x
329 319 ad2antlr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = if x = Q i + 1 L F Q i Q i + 1 x
330 iffalse ¬ x = Q i + 1 if x = Q i + 1 L F Q i Q i + 1 x = F Q i Q i + 1 x
331 330 adantl φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 if x = Q i + 1 L F Q i Q i + 1 x = F Q i Q i + 1 x
332 184 ad3antrrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 Q i *
333 186 ad3antrrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 Q i + 1 *
334 65 ad2antrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 x
335 50 ad2antrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i Q i
336 65 adantr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i x
337 184 ad2antrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i Q i *
338 186 ad2antrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i Q i + 1 *
339 simplr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i x Q i Q i + 1
340 iccgelb Q i * Q i + 1 * x Q i Q i + 1 Q i x
341 337 338 339 340 syl3anc φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i Q i x
342 neqne ¬ x = Q i x Q i
343 342 adantl φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i x Q i
344 335 336 341 343 leneltd φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i Q i < x
345 344 adantr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 Q i < x
346 53 ad3antrrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 Q i + 1
347 184 adantr φ i 0 ..^ M x Q i Q i + 1 Q i *
348 186 adantr φ i 0 ..^ M x Q i Q i + 1 Q i + 1 *
349 simpr φ i 0 ..^ M x Q i Q i + 1 x Q i Q i + 1
350 iccleub Q i * Q i + 1 * x Q i Q i + 1 x Q i + 1
351 347 348 349 350 syl3anc φ i 0 ..^ M x Q i Q i + 1 x Q i + 1
352 351 ad2antrr φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 x Q i + 1
353 neqne ¬ x = Q i + 1 x Q i + 1
354 353 necomd ¬ x = Q i + 1 Q i + 1 x
355 354 adantl φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 Q i + 1 x
356 334 346 352 355 leneltd φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 x < Q i + 1
357 332 333 334 345 356 eliood φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 x Q i Q i + 1
358 fvres x Q i Q i + 1 F Q i Q i + 1 x = F x
359 357 358 syl φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 F Q i Q i + 1 x = F x
360 329 331 359 3eqtrrd φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
361 326 328 360 3eqtrd φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i ¬ x = Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
362 325 361 pm2.61dan φ i 0 ..^ M x Q i Q i + 1 ¬ x = Q i if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
363 314 362 pm2.61dan φ i 0 ..^ M x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F x = if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
364 363 mpteq2dva φ i 0 ..^ M x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F x = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
365 13 364 eqtrid φ i 0 ..^ M G = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
366 eqeq1 x = w x = Q i w = Q i
367 eqeq1 x = w x = Q i + 1 w = Q i + 1
368 fveq2 x = w F Q i Q i + 1 x = F Q i Q i + 1 w
369 367 368 ifbieq2d x = w if x = Q i + 1 L F Q i Q i + 1 x = if w = Q i + 1 L F Q i Q i + 1 w
370 366 369 ifbieq2d x = w if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
371 370 cbvmptv x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
372 365 371 eqtrdi φ i 0 ..^ M G = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
373 372 adantr φ i 0 ..^ M x = S i G = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
374 simpr φ i 0 ..^ M x = S i w = x T w = x T
375 oveq1 x = S i x T = S i T
376 375 ad2antlr φ i 0 ..^ M x = S i w = x T x T = S i T
377 229 eqcomd φ i 0 ..^ M S i T = Q i
378 377 ad2antrr φ i 0 ..^ M x = S i w = x T S i T = Q i
379 374 376 378 3eqtrd φ i 0 ..^ M x = S i w = x T w = Q i
380 379 iftrued φ i 0 ..^ M x = S i w = x T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = R
381 375 adantl φ i 0 ..^ M x = S i x T = S i T
382 50 53 40 ltled φ i 0 ..^ M Q i Q i + 1
383 lbicc2 Q i * Q i + 1 * Q i Q i + 1 Q i Q i Q i + 1
384 184 186 382 383 syl3anc φ i 0 ..^ M Q i Q i Q i + 1
385 377 384 eqeltrd φ i 0 ..^ M S i T Q i Q i + 1
386 385 adantr φ i 0 ..^ M x = S i S i T Q i Q i + 1
387 381 386 eqeltrd φ i 0 ..^ M x = S i x T Q i Q i + 1
388 limccl F Q i Q i + 1 lim Q i
389 388 11 sselid φ i 0 ..^ M R
390 389 adantr φ i 0 ..^ M x = S i R
391 373 380 387 390 fvmptd φ i 0 ..^ M x = S i G x T = R
392 310 391 eqtr4d φ i 0 ..^ M x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = G x T
393 392 adantlr φ i 0 ..^ M x S i S i + 1 x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = G x T
394 iffalse ¬ x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = if x = S i + 1 L F S i S i + 1 x
395 394 adantl φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = if x = S i + 1 L F S i S i + 1 x
396 372 adantr φ i 0 ..^ M x = S i + 1 G = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
397 eqeq1 w = S i + 1 T w = Q i S i + 1 T = Q i
398 eqeq1 w = S i + 1 T w = Q i + 1 S i + 1 T = Q i + 1
399 fveq2 w = S i + 1 T F Q i Q i + 1 w = F Q i Q i + 1 S i + 1 T
400 398 399 ifbieq2d w = S i + 1 T if w = Q i + 1 L F Q i Q i + 1 w = if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T
401 397 400 ifbieq2d w = S i + 1 T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = if S i + 1 T = Q i R if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T
402 401 adantl φ i 0 ..^ M w = S i + 1 T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = if S i + 1 T = Q i R if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T
403 eqeq1 S i + 1 T = Q i + 1 S i + 1 T = Q i Q i + 1 = Q i
404 iftrue S i + 1 T = Q i + 1 if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T = L
405 403 404 ifbieq2d S i + 1 T = Q i + 1 if S i + 1 T = Q i R if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T = if Q i + 1 = Q i R L
406 248 405 syl φ i 0 ..^ M if S i + 1 T = Q i R if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T = if Q i + 1 = Q i R L
407 406 adantr φ i 0 ..^ M w = S i + 1 T if S i + 1 T = Q i R if S i + 1 T = Q i + 1 L F Q i Q i + 1 S i + 1 T = if Q i + 1 = Q i R L
408 50 40 gtned φ i 0 ..^ M Q i + 1 Q i
409 408 neneqd φ i 0 ..^ M ¬ Q i + 1 = Q i
410 409 iffalsed φ i 0 ..^ M if Q i + 1 = Q i R L = L
411 410 adantr φ i 0 ..^ M w = S i + 1 T if Q i + 1 = Q i R L = L
412 402 407 411 3eqtrd φ i 0 ..^ M w = S i + 1 T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = L
413 412 adantlr φ i 0 ..^ M x = S i + 1 w = S i + 1 T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = L
414 ubicc2 Q i * Q i + 1 * Q i Q i + 1 Q i + 1 Q i Q i + 1
415 184 186 382 414 syl3anc φ i 0 ..^ M Q i + 1 Q i Q i + 1
416 248 415 eqeltrd φ i 0 ..^ M S i + 1 T Q i Q i + 1
417 416 adantr φ i 0 ..^ M x = S i + 1 S i + 1 T Q i Q i + 1
418 limccl F Q i Q i + 1 lim Q i + 1
419 418 12 sselid φ i 0 ..^ M L
420 419 adantr φ i 0 ..^ M x = S i + 1 L
421 396 413 417 420 fvmptd φ i 0 ..^ M x = S i + 1 G S i + 1 T = L
422 oveq1 x = S i + 1 x T = S i + 1 T
423 422 fveq2d x = S i + 1 G x T = G S i + 1 T
424 423 adantl φ i 0 ..^ M x = S i + 1 G x T = G S i + 1 T
425 iftrue x = S i + 1 if x = S i + 1 L F S i S i + 1 x = L
426 425 adantl φ i 0 ..^ M x = S i + 1 if x = S i + 1 L F S i S i + 1 x = L
427 421 424 426 3eqtr4rd φ i 0 ..^ M x = S i + 1 if x = S i + 1 L F S i S i + 1 x = G x T
428 427 ad4ant14 φ i 0 ..^ M x S i S i + 1 ¬ x = S i x = S i + 1 if x = S i + 1 L F S i S i + 1 x = G x T
429 iffalse ¬ x = S i + 1 if x = S i + 1 L F S i S i + 1 x = F S i S i + 1 x
430 429 adantl φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 if x = S i + 1 L F S i S i + 1 x = F S i S i + 1 x
431 372 adantr φ i 0 ..^ M x S i S i + 1 G = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
432 431 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 G = w Q i Q i + 1 if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w
433 eqeq1 w = x T w = Q i x T = Q i
434 eqeq1 w = x T w = Q i + 1 x T = Q i + 1
435 fveq2 w = x T F Q i Q i + 1 w = F Q i Q i + 1 x T
436 434 435 ifbieq2d w = x T if w = Q i + 1 L F Q i Q i + 1 w = if x T = Q i + 1 L F Q i Q i + 1 x T
437 433 436 ifbieq2d w = x T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = if x T = Q i R if x T = Q i + 1 L F Q i Q i + 1 x T
438 437 adantl φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 w = x T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = if x T = Q i R if x T = Q i + 1 L F Q i Q i + 1 x T
439 305 recnd φ i 0 ..^ M x S i S i + 1 x
440 227 adantr φ i 0 ..^ M x S i S i + 1 T
441 439 440 npcand φ i 0 ..^ M x S i S i + 1 x - T + T = x
442 441 eqcomd φ i 0 ..^ M x S i S i + 1 x = x - T + T
443 442 adantr φ i 0 ..^ M x S i S i + 1 x T = Q i x = x - T + T
444 oveq1 x T = Q i x - T + T = Q i + T
445 444 adantl φ i 0 ..^ M x S i S i + 1 x T = Q i x - T + T = Q i + T
446 296 ad2antrr φ i 0 ..^ M x S i S i + 1 x T = Q i Q i + T = S i
447 443 445 446 3eqtrd φ i 0 ..^ M x S i S i + 1 x T = Q i x = S i
448 447 stoic1a φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x T = Q i
449 448 iffalsed φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x T = Q i R if x T = Q i + 1 L F Q i Q i + 1 x T = if x T = Q i + 1 L F Q i Q i + 1 x T
450 449 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 w = x T if x T = Q i R if x T = Q i + 1 L F Q i Q i + 1 x T = if x T = Q i + 1 L F Q i Q i + 1 x T
451 442 adantr φ i 0 ..^ M x S i S i + 1 x T = Q i + 1 x = x - T + T
452 oveq1 x T = Q i + 1 x - T + T = Q i + 1 + T
453 452 adantl φ i 0 ..^ M x S i S i + 1 x T = Q i + 1 x - T + T = Q i + 1 + T
454 292 ad2antrr φ i 0 ..^ M x S i S i + 1 x T = Q i + 1 Q i + 1 + T = S i + 1
455 451 453 454 3eqtrd φ i 0 ..^ M x S i S i + 1 x T = Q i + 1 x = S i + 1
456 455 stoic1a φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 ¬ x T = Q i + 1
457 456 iffalsed φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 if x T = Q i + 1 L F Q i Q i + 1 x T = F Q i Q i + 1 x T
458 457 adantlr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 if x T = Q i + 1 L F Q i Q i + 1 x T = F Q i Q i + 1 x T
459 458 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 w = x T if x T = Q i + 1 L F Q i Q i + 1 x T = F Q i Q i + 1 x T
460 438 450 459 3eqtrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 w = x T if w = Q i R if w = Q i + 1 L F Q i Q i + 1 w = F Q i Q i + 1 x T
461 50 adantr φ i 0 ..^ M x S i S i + 1 Q i
462 53 adantr φ i 0 ..^ M x S i S i + 1 Q i + 1
463 78 ad2antrr φ i 0 ..^ M x S i S i + 1 T
464 305 463 resubcld φ i 0 ..^ M x S i S i + 1 x T
465 229 adantr φ i 0 ..^ M x S i S i + 1 Q i = S i T
466 208 adantr φ i 0 ..^ M x S i S i + 1 S i *
467 210 adantr φ i 0 ..^ M x S i S i + 1 S i + 1 *
468 iccgelb S i * S i + 1 * x S i S i + 1 S i x
469 466 467 303 468 syl3anc φ i 0 ..^ M x S i S i + 1 S i x
470 301 305 463 469 lesub1dd φ i 0 ..^ M x S i S i + 1 S i T x T
471 465 470 eqbrtrd φ i 0 ..^ M x S i S i + 1 Q i x T
472 iccleub S i * S i + 1 * x S i S i + 1 x S i + 1
473 466 467 303 472 syl3anc φ i 0 ..^ M x S i S i + 1 x S i + 1
474 305 302 463 473 lesub1dd φ i 0 ..^ M x S i S i + 1 x T S i + 1 T
475 248 adantr φ i 0 ..^ M x S i S i + 1 S i + 1 T = Q i + 1
476 474 475 breqtrd φ i 0 ..^ M x S i S i + 1 x T Q i + 1
477 461 462 464 471 476 eliccd φ i 0 ..^ M x S i S i + 1 x T Q i Q i + 1
478 477 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T Q i Q i + 1
479 138 273 fssresd φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1
480 479 ad3antrrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F Q i Q i + 1 : Q i Q i + 1
481 184 ad3antrrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 Q i *
482 186 ad3antrrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 Q i + 1 *
483 305 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x
484 98 ad3antrrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 T
485 483 484 resubcld φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T
486 50 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i Q i
487 464 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i x T
488 471 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i Q i x T
489 448 neqned φ i 0 ..^ M x S i S i + 1 ¬ x = S i x T Q i
490 486 487 488 489 leneltd φ i 0 ..^ M x S i S i + 1 ¬ x = S i Q i < x T
491 490 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 Q i < x T
492 464 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 x T
493 53 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 Q i + 1
494 476 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 x T Q i + 1
495 eqcom x T = Q i + 1 Q i + 1 = x T
496 455 ex φ i 0 ..^ M x S i S i + 1 x T = Q i + 1 x = S i + 1
497 495 496 syl5bir φ i 0 ..^ M x S i S i + 1 Q i + 1 = x T x = S i + 1
498 497 con3dimp φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 ¬ Q i + 1 = x T
499 498 neqned φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 Q i + 1 x T
500 492 493 494 499 leneltd φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1 x T < Q i + 1
501 500 adantlr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T < Q i + 1
502 481 482 485 491 501 eliood φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T Q i Q i + 1
503 480 502 ffvelrnd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F Q i Q i + 1 x T
504 432 460 478 503 fvmptd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 G x T = F Q i Q i + 1 x T
505 fvres x T Q i Q i + 1 F Q i Q i + 1 x T = F x T
506 502 505 syl φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F Q i Q i + 1 x T = F x T
507 504 506 eqtrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 G x T = F x T
508 466 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 S i *
509 467 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 S i + 1 *
510 123 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i S i
511 305 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i x
512 469 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i S i x
513 neqne ¬ x = S i x S i
514 513 adantl φ i 0 ..^ M x S i S i + 1 ¬ x = S i x S i
515 510 511 512 514 leneltd φ i 0 ..^ M x S i S i + 1 ¬ x = S i S i < x
516 515 adantr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 S i < x
517 302 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 S i + 1
518 473 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x S i + 1
519 neqne ¬ x = S i + 1 x S i + 1
520 519 necomd ¬ x = S i + 1 S i + 1 x
521 520 adantl φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 S i + 1 x
522 483 517 518 521 leneltd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x < S i + 1
523 508 509 483 516 522 eliood φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x S i S i + 1
524 fvres x S i S i + 1 F S i S i + 1 x = F x
525 523 524 syl φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F S i S i + 1 x = F x
526 441 fveq2d φ i 0 ..^ M x S i S i + 1 F x - T + T = F x
527 526 eqcomd φ i 0 ..^ M x S i S i + 1 F x = F x - T + T
528 527 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F x = F x - T + T
529 439 440 subcld φ i 0 ..^ M x S i S i + 1 x T
530 elex x T x T V
531 529 530 syl φ i 0 ..^ M x S i S i + 1 x T V
532 531 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T V
533 simp-4l φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 φ
534 156 adantr φ i 0 ..^ M A *
535 158 adantr φ i 0 ..^ M B *
536 160 adantr φ i 0 ..^ M Q : 0 M A B
537 simpr φ i 0 ..^ M i 0 ..^ M
538 534 535 536 537 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 A B
539 538 adantr φ i 0 ..^ M x S i S i + 1 Q i Q i + 1 A B
540 539 477 sseldd φ i 0 ..^ M x S i S i + 1 x T A B
541 540 ad2antrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 x T A B
542 533 541 jca φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 φ x T A B
543 eleq1 y = x T y A B x T A B
544 543 anbi2d y = x T φ y A B φ x T A B
545 oveq1 y = x T y + T = x - T + T
546 545 fveq2d y = x T F y + T = F x - T + T
547 fveq2 y = x T F y = F x T
548 546 547 eqeq12d y = x T F y + T = F y F x - T + T = F x T
549 544 548 imbi12d y = x T φ y A B F y + T = F y φ x T A B F x - T + T = F x T
550 eleq1 x = y x A B y A B
551 550 anbi2d x = y φ x A B φ y A B
552 oveq1 x = y x + T = y + T
553 552 fveq2d x = y F x + T = F y + T
554 fveq2 x = y F x = F y
555 553 554 eqeq12d x = y F x + T = F x F y + T = F y
556 551 555 imbi12d x = y φ x A B F x + T = F x φ y A B F y + T = F y
557 556 7 chvarvv φ y A B F y + T = F y
558 549 557 vtoclg x T V φ x T A B F x - T + T = F x T
559 532 542 558 sylc φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F x - T + T = F x T
560 525 528 559 3eqtrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F S i S i + 1 x = F x T
561 507 560 eqtr4d φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 G x T = F S i S i + 1 x
562 430 561 eqtr4d φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 if x = S i + 1 L F S i S i + 1 x = G x T
563 428 562 pm2.61dan φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x = S i + 1 L F S i S i + 1 x = G x T
564 395 563 eqtrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x = G x T
565 393 564 pm2.61dan φ i 0 ..^ M x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x = G x T
566 310 390 eqeltrd φ i 0 ..^ M x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x
567 566 adantlr φ i 0 ..^ M x S i S i + 1 x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x
568 426 420 eqeltrd φ i 0 ..^ M x = S i + 1 if x = S i + 1 L F S i S i + 1 x
569 568 ad4ant14 φ i 0 ..^ M x S i S i + 1 ¬ x = S i x = S i + 1 if x = S i + 1 L F S i S i + 1 x
570 265 267 fssresd φ i 0 ..^ M F S i S i + 1 : S i S i + 1
571 570 ad3antrrr φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F S i S i + 1 : S i S i + 1
572 571 523 ffvelrnd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 F S i S i + 1 x
573 430 572 eqeltrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i ¬ x = S i + 1 if x = S i + 1 L F S i S i + 1 x
574 569 573 pm2.61dan φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x = S i + 1 L F S i S i + 1 x
575 395 574 eqeltrd φ i 0 ..^ M x S i S i + 1 ¬ x = S i if x = S i R if x = S i + 1 L F S i S i + 1 x
576 567 575 pm2.61dan φ i 0 ..^ M x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x
577 eqid x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x = x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x
578 577 fvmpt2 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x = if x = S i R if x = S i + 1 L F S i S i + 1 x
579 303 576 578 syl2anc φ i 0 ..^ M x S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x = if x = S i R if x = S i + 1 L F S i S i + 1 x
580 nfv x φ i 0 ..^ M
581 eqid x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x
582 580 581 50 53 10 12 11 cncfiooicc φ i 0 ..^ M x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F Q i Q i + 1 x : Q i Q i + 1 cn
583 365 582 eqeltrd φ i 0 ..^ M G : Q i Q i + 1 cn
584 cncff G : Q i Q i + 1 cn G : Q i Q i + 1
585 583 584 syl φ i 0 ..^ M G : Q i Q i + 1
586 585 adantr φ i 0 ..^ M x S i S i + 1 G : Q i Q i + 1
587 586 477 ffvelrnd φ i 0 ..^ M x S i S i + 1 G x T
588 14 fvmpt2 x S i S i + 1 G x T H x = G x T
589 303 587 588 syl2anc φ i 0 ..^ M x S i S i + 1 H x = G x T
590 565 579 589 3eqtr4rd φ i 0 ..^ M x S i S i + 1 H x = x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x
591 590 itgeq2dv φ i 0 ..^ M S i S i + 1 H x dx = S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x dx
592 ioossicc S i S i + 1 S i S i + 1
593 592 sseli x S i S i + 1 x S i S i + 1
594 593 adantl φ i 0 ..^ M x S i S i + 1 x S i S i + 1
595 593 576 sylan2 φ i 0 ..^ M x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x
596 594 595 578 syl2anc φ i 0 ..^ M x S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x = if x = S i R if x = S i + 1 L F S i S i + 1 x
597 231 239 gtned φ i 0 ..^ M x S i S i + 1 x S i
598 597 neneqd φ i 0 ..^ M x S i S i + 1 ¬ x = S i
599 598 iffalsed φ i 0 ..^ M x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x = if x = S i + 1 L F S i S i + 1 x
600 232 243 ltned φ i 0 ..^ M x S i S i + 1 x S i + 1
601 600 neneqd φ i 0 ..^ M x S i S i + 1 ¬ x = S i + 1
602 601 iffalsed φ i 0 ..^ M x S i S i + 1 if x = S i + 1 L F S i S i + 1 x = F S i S i + 1 x
603 524 adantl φ i 0 ..^ M x S i S i + 1 F S i S i + 1 x = F x
604 602 603 eqtrd φ i 0 ..^ M x S i S i + 1 if x = S i + 1 L F S i S i + 1 x = F x
605 596 599 604 3eqtrd φ i 0 ..^ M x S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x = F x
606 605 itgeq2dv φ i 0 ..^ M S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x dx = S i S i + 1 F x dx
607 579 576 eqeltrd φ i 0 ..^ M x S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x
608 123 124 607 itgioo φ i 0 ..^ M S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x dx = S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x dx
609 123 124 306 itgioo φ i 0 ..^ M S i S i + 1 F x dx = S i S i + 1 F x dx
610 606 608 609 3eqtr3d φ i 0 ..^ M S i S i + 1 x S i S i + 1 if x = S i R if x = S i + 1 L F S i S i + 1 x x dx = S i S i + 1 F x dx
611 591 610 eqtr2d φ i 0 ..^ M S i S i + 1 F x dx = S i S i + 1 H x dx
612 102 112 oveq12d φ i 0 ..^ M S i S i + 1 = Q i + T Q i + 1 + T
613 612 itgeq1d φ i 0 ..^ M S i S i + 1 H x dx = Q i + T Q i + 1 + T H x dx
614 simpr φ i 0 ..^ M x Q i + T Q i + 1 + T x Q i + T Q i + 1 + T
615 612 eqcomd φ i 0 ..^ M Q i + T Q i + 1 + T = S i S i + 1
616 615 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T Q i + 1 + T = S i S i + 1
617 614 616 eleqtrd φ i 0 ..^ M x Q i + T Q i + 1 + T x S i S i + 1
618 585 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T G : Q i Q i + 1
619 50 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i
620 53 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1
621 100 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T
622 111 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T
623 eliccre Q i + T Q i + 1 + T x Q i + T Q i + 1 + T x
624 621 622 614 623 syl3anc φ i 0 ..^ M x Q i + T Q i + 1 + T x
625 78 ad2antrr φ i 0 ..^ M x Q i + T Q i + 1 + T T
626 624 625 resubcld φ i 0 ..^ M x Q i + T Q i + 1 + T x T
627 228 eqcomd φ i 0 ..^ M Q i = Q i + T - T
628 627 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i = Q i + T - T
629 621 rexrd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T *
630 622 rexrd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T *
631 iccgelb Q i + T * Q i + 1 + T * x Q i + T Q i + 1 + T Q i + T x
632 629 630 614 631 syl3anc φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T x
633 621 624 625 632 lesub1dd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T - T x T
634 628 633 eqbrtrd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i x T
635 iccleub Q i + T * Q i + 1 + T * x Q i + T Q i + 1 + T x Q i + 1 + T
636 629 630 614 635 syl3anc φ i 0 ..^ M x Q i + T Q i + 1 + T x Q i + 1 + T
637 624 622 625 636 lesub1dd φ i 0 ..^ M x Q i + T Q i + 1 + T x T Q i + 1 + T - T
638 247 adantr φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T - T = Q i + 1
639 637 638 breqtrd φ i 0 ..^ M x Q i + T Q i + 1 + T x T Q i + 1
640 619 620 626 634 639 eliccd φ i 0 ..^ M x Q i + T Q i + 1 + T x T Q i Q i + 1
641 618 640 ffvelrnd φ i 0 ..^ M x Q i + T Q i + 1 + T G x T
642 617 641 588 syl2anc φ i 0 ..^ M x Q i + T Q i + 1 + T H x = G x T
643 eqidd φ i 0 ..^ M x Q i + T Q i + 1 + T y Q i + T Q i + 1 + T G y T = y Q i + T Q i + 1 + T G y T
644 oveq1 y = x y T = x T
645 644 fveq2d y = x G y T = G x T
646 645 adantl φ i 0 ..^ M x Q i + T Q i + 1 + T y = x G y T = G x T
647 643 646 614 641 fvmptd φ i 0 ..^ M x Q i + T Q i + 1 + T y Q i + T Q i + 1 + T G y T x = G x T
648 642 647 eqtr4d φ i 0 ..^ M x Q i + T Q i + 1 + T H x = y Q i + T Q i + 1 + T G y T x
649 648 itgeq2dv φ i 0 ..^ M Q i + T Q i + 1 + T H x dx = Q i + T Q i + 1 + T y Q i + T Q i + 1 + T G y T x dx
650 5 adantr φ i 0 ..^ M T +
651 645 cbvmptv y Q i + T Q i + 1 + T G y T = x Q i + T Q i + 1 + T G x T
652 50 53 382 583 650 651 itgiccshift φ i 0 ..^ M Q i + T Q i + 1 + T y Q i + T Q i + 1 + T G y T x dx = Q i Q i + 1 G x dx
653 613 649 652 3eqtrd φ i 0 ..^ M S i S i + 1 H x dx = Q i Q i + 1 G x dx
654 135 adantr φ i 0 ..^ M dom F =
655 64 654 sseqtrrd φ i 0 ..^ M Q i Q i + 1 dom F
656 50 53 138 10 655 11 12 13 itgioocnicc φ i 0 ..^ M G 𝐿 1 Q i Q i + 1 G x dx = Q i Q i + 1 F x dx
657 656 simprd φ i 0 ..^ M Q i Q i + 1 G x dx = Q i Q i + 1 F x dx
658 611 653 657 3eqtrd φ i 0 ..^ M S i S i + 1 F x dx = Q i Q i + 1 F x dx
659 658 sumeq2dv φ i 0 ..^ M S i S i + 1 F x dx = i 0 ..^ M Q i Q i + 1 F x dx
660 93 308 659 3eqtrrd φ i 0 ..^ M Q i Q i + 1 F x dx = A + T B + T F x dx
661 25 68 660 3eqtrrd φ A + T B + T F x dx = A B F x dx