Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem82.1 |
|
2 |
|
fourierdlem82.2 |
|
3 |
|
fourierdlem82.3 |
|
4 |
|
fourierdlem82.4 |
|
5 |
|
fourierdlem82.5 |
|
6 |
|
fourierdlem82.6 |
|
7 |
|
fourierdlem82.7 |
|
8 |
|
fourierdlem82.8 |
|
9 |
|
fourierdlem82.9 |
|
10 |
2 3 4
|
ltled |
|
11 |
2 3 9 10
|
lesub1dd |
|
12 |
11
|
ditgpos |
|
13 |
|
iftrue |
|
14 |
13
|
adantl |
|
15 |
|
iftrue |
|
16 |
15
|
adantl |
|
17 |
14 16
|
eqtr4d |
|
18 |
17
|
adantlr |
|
19 |
|
iffalse |
|
20 |
|
iftrue |
|
21 |
19 20
|
sylan9eq |
|
22 |
21
|
adantll |
|
23 |
|
iffalse |
|
24 |
|
iftrue |
|
25 |
23 24
|
sylan9eq |
|
26 |
25
|
adantll |
|
27 |
22 26
|
eqtr4d |
|
28 |
|
iffalse |
|
29 |
28
|
adantl |
|
30 |
19
|
ad2antlr |
|
31 |
|
iffalse |
|
32 |
31
|
adantl |
|
33 |
23
|
ad2antlr |
|
34 |
2
|
rexrd |
|
35 |
34
|
ad3antrrr |
|
36 |
3
|
rexrd |
|
37 |
36
|
ad3antrrr |
|
38 |
2
|
adantr |
|
39 |
3
|
adantr |
|
40 |
|
simpr |
|
41 |
|
eliccre |
|
42 |
38 39 40 41
|
syl3anc |
|
43 |
42
|
ad2antrr |
|
44 |
2
|
ad2antrr |
|
45 |
42
|
adantr |
|
46 |
|
elicc2 |
|
47 |
38 39 46
|
syl2anc |
|
48 |
40 47
|
mpbid |
|
49 |
48
|
simp2d |
|
50 |
49
|
adantr |
|
51 |
|
neqne |
|
52 |
51
|
adantl |
|
53 |
44 45 50 52
|
leneltd |
|
54 |
53
|
adantr |
|
55 |
42
|
adantr |
|
56 |
3
|
ad2antrr |
|
57 |
48
|
simp3d |
|
58 |
57
|
adantr |
|
59 |
|
nesym |
|
60 |
59
|
biimpri |
|
61 |
60
|
adantl |
|
62 |
55 56 58 61
|
leneltd |
|
63 |
62
|
adantlr |
|
64 |
35 37 43 54 63
|
eliood |
|
65 |
|
fvres |
|
66 |
64 65
|
syl |
|
67 |
32 33 66
|
3eqtr4d |
|
68 |
29 30 67
|
3eqtr4d |
|
69 |
27 68
|
pm2.61dan |
|
70 |
18 69
|
pm2.61dan |
|
71 |
70
|
mpteq2dva |
|
72 |
1 71
|
syl5eq |
|
73 |
72
|
adantr |
|
74 |
|
eqeq1 |
|
75 |
|
eqeq1 |
|
76 |
|
fveq2 |
|
77 |
75 76
|
ifbieq2d |
|
78 |
74 77
|
ifbieq2d |
|
79 |
2
|
adantr |
|
80 |
|
simpr |
|
81 |
2 9
|
resubcld |
|
82 |
81
|
rexrd |
|
83 |
82
|
adantr |
|
84 |
3 9
|
resubcld |
|
85 |
84
|
rexrd |
|
86 |
85
|
adantr |
|
87 |
|
elioo2 |
|
88 |
83 86 87
|
syl2anc |
|
89 |
80 88
|
mpbid |
|
90 |
89
|
simp2d |
|
91 |
9
|
adantr |
|
92 |
89
|
simp1d |
|
93 |
79 91 92
|
ltsubadd2d |
|
94 |
90 93
|
mpbid |
|
95 |
79 94
|
gtned |
|
96 |
95
|
neneqd |
|
97 |
96
|
iffalsed |
|
98 |
91 92
|
readdcld |
|
99 |
89
|
simp3d |
|
100 |
3
|
adantr |
|
101 |
91 92 100
|
ltaddsub2d |
|
102 |
99 101
|
mpbird |
|
103 |
98 102
|
ltned |
|
104 |
103
|
neneqd |
|
105 |
104
|
iffalsed |
|
106 |
97 105
|
eqtrd |
|
107 |
78 106
|
sylan9eqr |
|
108 |
79 98 94
|
ltled |
|
109 |
98 100 102
|
ltled |
|
110 |
79 100 98 108 109
|
eliccd |
|
111 |
5
|
ffund |
|
112 |
111
|
adantr |
|
113 |
5
|
fdmd |
|
114 |
113
|
eqcomd |
|
115 |
114
|
adantr |
|
116 |
110 115
|
eleqtrd |
|
117 |
|
fvelrn |
|
118 |
112 116 117
|
syl2anc |
|
119 |
73 107 110 118
|
fvmptd |
|
120 |
119
|
itgeq2dv |
|
121 |
5
|
frnd |
|
122 |
121
|
adantr |
|
123 |
111
|
adantr |
|
124 |
2
|
adantr |
|
125 |
3
|
adantr |
|
126 |
9
|
adantr |
|
127 |
81
|
adantr |
|
128 |
84
|
adantr |
|
129 |
|
simpr |
|
130 |
|
eliccre |
|
131 |
127 128 129 130
|
syl3anc |
|
132 |
126 131
|
readdcld |
|
133 |
|
elicc2 |
|
134 |
127 128 133
|
syl2anc |
|
135 |
129 134
|
mpbid |
|
136 |
135
|
simp2d |
|
137 |
124 126 131
|
lesubadd2d |
|
138 |
136 137
|
mpbid |
|
139 |
135
|
simp3d |
|
140 |
126 131 125
|
leaddsub2d |
|
141 |
139 140
|
mpbird |
|
142 |
124 125 132 138 141
|
eliccd |
|
143 |
114
|
adantr |
|
144 |
142 143
|
eleqtrd |
|
145 |
123 144 117
|
syl2anc |
|
146 |
122 145
|
sseldd |
|
147 |
81 84 146
|
itgioo |
|
148 |
12 120 147
|
3eqtrrd |
|
149 |
|
nfv |
|
150 |
2 3 4 5
|
limcicciooub |
|
151 |
7 150
|
eleqtrrd |
|
152 |
2 3 4 5
|
limciccioolb |
|
153 |
8 152
|
eleqtrrd |
|
154 |
149 1 2 3 6 151 153
|
cncfiooicc |
|
155 |
2 3 10 9 154
|
itgsbtaddcnst |
|
156 |
10
|
ditgpos |
|
157 |
|
fveq2 |
|
158 |
157
|
cbvitgv |
|
159 |
1
|
a1i |
|
160 |
2
|
ad2antrr |
|
161 |
|
simplr |
|
162 |
34
|
ad2antrr |
|
163 |
36
|
ad2antrr |
|
164 |
|
elioo2 |
|
165 |
162 163 164
|
syl2anc |
|
166 |
161 165
|
mpbid |
|
167 |
166
|
simp2d |
|
168 |
|
simpr |
|
169 |
167 168
|
breqtrrd |
|
170 |
160 169
|
gtned |
|
171 |
170
|
neneqd |
|
172 |
171
|
iffalsed |
|
173 |
166
|
simp1d |
|
174 |
168 173
|
eqeltrd |
|
175 |
166
|
simp3d |
|
176 |
168 175
|
eqbrtrd |
|
177 |
174 176
|
ltned |
|
178 |
177
|
neneqd |
|
179 |
178
|
iffalsed |
|
180 |
168 161
|
eqeltrd |
|
181 |
180 65
|
syl |
|
182 |
|
fveq2 |
|
183 |
182
|
adantl |
|
184 |
181 183
|
eqtrd |
|
185 |
172 179 184
|
3eqtrd |
|
186 |
|
ioossicc |
|
187 |
|
simpr |
|
188 |
186 187
|
sselid |
|
189 |
111
|
adantr |
|
190 |
114
|
adantr |
|
191 |
188 190
|
eleqtrd |
|
192 |
|
fvelrn |
|
193 |
189 191 192
|
syl2anc |
|
194 |
159 185 188 193
|
fvmptd |
|
195 |
194
|
itgeq2dv |
|
196 |
158 195
|
syl5eq |
|
197 |
5
|
ffvelrnda |
|
198 |
2 3 197
|
itgioo |
|
199 |
156 196 198
|
3eqtrd |
|
200 |
148 155 199
|
3eqtrrd |
|