Metamath Proof Explorer


Theorem fourierdlem83

Description: The fourier partial sum for F rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem83.f φ F :
fourierdlem83.c C = π π
fourierdlem83.fl1 φ F C 𝐿 1
fourierdlem83.a A = n 0 C F x cos n x dx π
fourierdlem83.b B = n C F x sin n x dx π
fourierdlem83.x φ X
fourierdlem83.s S = m A 0 2 + n = 1 m A n cos n X + B n sin n X
fourierdlem83.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
fourierdlem83.n φ N
Assertion fourierdlem83 φ S N = C F x D N x X dx

Proof

Step Hyp Ref Expression
1 fourierdlem83.f φ F :
2 fourierdlem83.c C = π π
3 fourierdlem83.fl1 φ F C 𝐿 1
4 fourierdlem83.a A = n 0 C F x cos n x dx π
5 fourierdlem83.b B = n C F x sin n x dx π
6 fourierdlem83.x φ X
7 fourierdlem83.s S = m A 0 2 + n = 1 m A n cos n X + B n sin n X
8 fourierdlem83.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
9 fourierdlem83.n φ N
10 7 a1i φ S = m A 0 2 + n = 1 m A n cos n X + B n sin n X
11 oveq2 m = N 1 m = 1 N
12 11 sumeq1d m = N n = 1 m A n cos n X + B n sin n X = n = 1 N A n cos n X + B n sin n X
13 12 oveq2d m = N A 0 2 + n = 1 m A n cos n X + B n sin n X = A 0 2 + n = 1 N A n cos n X + B n sin n X
14 13 adantl φ m = N A 0 2 + n = 1 m A n cos n X + B n sin n X = A 0 2 + n = 1 N A n cos n X + B n sin n X
15 id φ φ
16 0nn0 0 0
17 16 a1i φ 0 0
18 16 elexi 0 V
19 eleq1 n = 0 n 0 0 0
20 19 anbi2d n = 0 φ n 0 φ 0 0
21 fveq2 n = 0 A n = A 0
22 21 eleq1d n = 0 A n A 0
23 20 22 imbi12d n = 0 φ n 0 A n φ 0 0 A 0
24 1 2 3 4 5 fourierdlem22 φ n 0 A n n B n
25 24 simpld φ n 0 A n
26 25 imp φ n 0 A n
27 18 23 26 vtocl φ 0 0 A 0
28 15 17 27 syl2anc φ A 0
29 28 rehalfcld φ A 0 2
30 fzfid φ 1 N Fin
31 eleq1 k = n k 0 n 0
32 31 anbi2d k = n φ k 0 φ n 0
33 simpl k = n x C k = n
34 33 oveq1d k = n x C k x = n x
35 34 fveq2d k = n x C cos k x = cos n x
36 35 oveq2d k = n x C F x cos k x = F x cos n x
37 36 itgeq2dv k = n C F x cos k x dx = C F x cos n x dx
38 37 eleq1d k = n C F x cos k x dx C F x cos n x dx
39 32 38 imbi12d k = n φ k 0 C F x cos k x dx φ n 0 C F x cos n x dx
40 1 adantr φ k 0 F :
41 3 adantr φ k 0 F C 𝐿 1
42 simpr φ k 0 k 0
43 40 2 41 4 42 fourierdlem16 φ k 0 A k x C F x 𝐿 1 C F x cos k x dx
44 43 simprd φ k 0 C F x cos k x dx
45 39 44 chvarvv φ n 0 C F x cos n x dx
46 pire π
47 46 a1i φ n 0 π
48 0re 0
49 pipos 0 < π
50 48 49 gtneii π 0
51 50 a1i φ n 0 π 0
52 45 47 51 redivcld φ n 0 C F x cos n x dx π
53 52 4 fmptd φ A : 0
54 53 adantr φ n 1 N A : 0
55 elfznn n 1 N n
56 55 nnnn0d n 1 N n 0
57 56 adantl φ n 1 N n 0
58 54 57 ffvelrnd φ n 1 N A n
59 57 nn0red φ n 1 N n
60 6 adantr φ n 1 N X
61 59 60 remulcld φ n 1 N n X
62 61 recoscld φ n 1 N cos n X
63 58 62 remulcld φ n 1 N A n cos n X
64 eleq1 k = n k n
65 64 anbi2d k = n φ k φ n
66 oveq1 k = n k x = n x
67 66 fveq2d k = n sin k x = sin n x
68 67 oveq2d k = n F x sin k x = F x sin n x
69 68 adantr k = n x C F x sin k x = F x sin n x
70 69 itgeq2dv k = n C F x sin k x dx = C F x sin n x dx
71 70 eleq1d k = n C F x sin k x dx C F x sin n x dx
72 65 71 imbi12d k = n φ k C F x sin k x dx φ n C F x sin n x dx
73 1 adantr φ k F :
74 3 adantr φ k F C 𝐿 1
75 simpr φ k k
76 73 2 74 5 75 fourierdlem21 φ k B k x C F x sin k x 𝐿 1 C F x sin k x dx
77 76 simprd φ k C F x sin k x dx
78 72 77 chvarvv φ n C F x sin n x dx
79 46 a1i φ n π
80 50 a1i φ n π 0
81 78 79 80 redivcld φ n C F x sin n x dx π
82 81 5 fmptd φ B :
83 82 adantr φ n 1 N B :
84 55 adantl φ n 1 N n
85 83 84 ffvelrnd φ n 1 N B n
86 61 resincld φ n 1 N sin n X
87 85 86 remulcld φ n 1 N B n sin n X
88 63 87 readdcld φ n 1 N A n cos n X + B n sin n X
89 30 88 fsumrecl φ n = 1 N A n cos n X + B n sin n X
90 29 89 readdcld φ A 0 2 + n = 1 N A n cos n X + B n sin n X
91 10 14 9 90 fvmptd φ S N = A 0 2 + n = 1 N A n cos n X + B n sin n X
92 4 a1i φ A = n 0 C F x cos n x dx π
93 oveq1 n = 0 n x = 0 x
94 93 fveq2d n = 0 cos n x = cos 0 x
95 94 oveq2d n = 0 F x cos n x = F x cos 0 x
96 95 adantr n = 0 x C F x cos n x = F x cos 0 x
97 96 itgeq2dv n = 0 C F x cos n x dx = C F x cos 0 x dx
98 97 adantl φ n = 0 C F x cos n x dx = C F x cos 0 x dx
99 98 oveq1d φ n = 0 C F x cos n x dx π = C F x cos 0 x dx π
100 1 2 3 4 17 fourierdlem16 φ A 0 x C F x 𝐿 1 C F x cos 0 x dx
101 100 simprd φ C F x cos 0 x dx
102 46 a1i φ π
103 50 a1i φ π 0
104 101 102 103 redivcld φ C F x cos 0 x dx π
105 92 99 17 104 fvmptd φ A 0 = C F x cos 0 x dx π
106 ioosscn π π
107 id x C x C
108 107 2 eleqtrdi x C x π π
109 106 108 sselid x C x
110 109 mul02d x C 0 x = 0
111 110 fveq2d x C cos 0 x = cos 0
112 cos0 cos 0 = 1
113 111 112 eqtrdi x C cos 0 x = 1
114 113 oveq2d x C F x cos 0 x = F x 1
115 114 adantl φ x C F x cos 0 x = F x 1
116 1 adantr φ x C F :
117 ioossre π π
118 117 108 sselid x C x
119 118 adantl φ x C x
120 116 119 ffvelrnd φ x C F x
121 120 recnd φ x C F x
122 121 mulid1d φ x C F x 1 = F x
123 115 122 eqtrd φ x C F x cos 0 x = F x
124 123 itgeq2dv φ C F x cos 0 x dx = C F x dx
125 124 oveq1d φ C F x cos 0 x dx π = C F x dx π
126 105 125 eqtrd φ A 0 = C F x dx π
127 126 oveq1d φ A 0 2 = C F x dx π 2
128 1 feqmptd φ F = x F x
129 128 reseq1d φ F C = x F x C
130 46 a1i x C π
131 130 renegcld x C π
132 ioossicc π π π π
133 2 132 eqsstri C π π
134 133 sseli x C x π π
135 eliccre π π x π π x
136 131 130 134 135 syl3anc x C x
137 136 ssriv C
138 resmpt C x F x C = x C F x
139 137 138 mp1i φ x F x C = x C F x
140 129 139 eqtr2d φ x C F x = F C
141 140 3 eqeltrd φ x C F x 𝐿 1
142 120 141 itgcl φ C F x dx
143 102 recnd φ π
144 2cnd φ 2
145 2ne0 2 0
146 145 a1i φ 2 0
147 142 143 144 103 146 divdiv32d φ C F x dx π 2 = C F x dx 2 π
148 142 144 146 divrecd φ C F x dx 2 = C F x dx 1 2
149 144 146 reccld φ 1 2
150 142 149 mulcomd φ C F x dx 1 2 = 1 2 C F x dx
151 149 120 141 itgmulc2 φ 1 2 C F x dx = C 1 2 F x dx
152 148 150 151 3eqtrd φ C F x dx 2 = C 1 2 F x dx
153 152 oveq1d φ C F x dx 2 π = C 1 2 F x dx π
154 127 147 153 3eqtrd φ A 0 2 = C 1 2 F x dx π
155 57 52 syldan φ n 1 N C F x cos n x dx π
156 4 fvmpt2 n 0 C F x cos n x dx π A n = C F x cos n x dx π
157 57 155 156 syl2anc φ n 1 N A n = C F x cos n x dx π
158 157 oveq1d φ n 1 N A n cos n X = C F x cos n x dx π cos n X
159 155 recnd φ n 1 N C F x cos n x dx π
160 62 recnd φ n 1 N cos n X
161 159 160 mulcomd φ n 1 N C F x cos n x dx π cos n X = cos n X C F x cos n x dx π
162 57 45 syldan φ n 1 N C F x cos n x dx
163 162 recnd φ n 1 N C F x cos n x dx
164 143 adantr φ n 1 N π
165 50 a1i φ n 1 N π 0
166 160 163 164 165 divassd φ n 1 N cos n X C F x cos n x dx π = cos n X C F x cos n x dx π
167 1 ad2antrr φ n 0 x C F :
168 118 adantl φ n 0 x C x
169 167 168 ffvelrnd φ n 0 x C F x
170 nn0re n 0 n
171 170 ad2antlr φ n 0 x C n
172 171 168 remulcld φ n 0 x C n x
173 172 recoscld φ n 0 x C cos n x
174 169 173 remulcld φ n 0 x C F x cos n x
175 56 174 sylanl2 φ n 1 N x C F x cos n x
176 ioombl π π dom vol
177 2 176 eqeltri C dom vol
178 177 elexi C V
179 178 a1i φ n 0 C V
180 eqidd φ n 0 x C cos n x = x C cos n x
181 eqidd φ n 0 x C F x = x C F x
182 179 173 169 180 181 offval2 φ n 0 x C cos n x × f x C F x = x C cos n x F x
183 173 recnd φ n 0 x C cos n x
184 121 adantlr φ n 0 x C F x
185 183 184 mulcomd φ n 0 x C cos n x F x = F x cos n x
186 185 mpteq2dva φ n 0 x C cos n x F x = x C F x cos n x
187 182 186 eqtr2d φ n 0 x C F x cos n x = x C cos n x × f x C F x
188 coscn cos : cn
189 188 a1i φ n 0 cos : cn
190 ax-resscn
191 137 190 sstri C
192 191 a1i φ n 0 C
193 170 recnd n 0 n
194 193 adantl φ n 0 n
195 ssid
196 195 a1i φ n 0
197 192 194 196 constcncfg φ n 0 x C n : C cn
198 192 196 idcncfg φ n 0 x C x : C cn
199 197 198 mulcncf φ n 0 x C n x : C cn
200 189 199 cncfmpt1f φ n 0 x C cos n x : C cn
201 cnmbf C dom vol x C cos n x : C cn x C cos n x MblFn
202 177 200 201 sylancr φ n 0 x C cos n x MblFn
203 141 adantr φ n 0 x C F x 𝐿 1
204 1re 1
205 simpr n 0 y dom x C cos n x y dom x C cos n x
206 170 adantr n 0 x C n
207 118 adantl n 0 x C x
208 206 207 remulcld n 0 x C n x
209 208 recoscld n 0 x C cos n x
210 209 ralrimiva n 0 x C cos n x
211 210 adantr n 0 y dom x C cos n x x C cos n x
212 dmmptg x C cos n x dom x C cos n x = C
213 211 212 syl n 0 y dom x C cos n x dom x C cos n x = C
214 205 213 eleqtrd n 0 y dom x C cos n x y C
215 eqidd n 0 y C x C cos n x = x C cos n x
216 oveq2 x = y n x = n y
217 216 fveq2d x = y cos n x = cos n y
218 217 adantl n 0 y C x = y cos n x = cos n y
219 simpr n 0 y C y C
220 170 adantr n 0 y C n
221 137 219 sselid n 0 y C y
222 220 221 remulcld n 0 y C n y
223 222 recoscld n 0 y C cos n y
224 215 218 219 223 fvmptd n 0 y C x C cos n x y = cos n y
225 224 fveq2d n 0 y C x C cos n x y = cos n y
226 abscosbd n y cos n y 1
227 222 226 syl n 0 y C cos n y 1
228 225 227 eqbrtrd n 0 y C x C cos n x y 1
229 214 228 syldan n 0 y dom x C cos n x x C cos n x y 1
230 229 ralrimiva n 0 y dom x C cos n x x C cos n x y 1
231 breq2 b = 1 x C cos n x y b x C cos n x y 1
232 231 ralbidv b = 1 y dom x C cos n x x C cos n x y b y dom x C cos n x x C cos n x y 1
233 232 rspcev 1 y dom x C cos n x x C cos n x y 1 b y dom x C cos n x x C cos n x y b
234 204 230 233 sylancr n 0 b y dom x C cos n x x C cos n x y b
235 234 adantl φ n 0 b y dom x C cos n x x C cos n x y b
236 bddmulibl x C cos n x MblFn x C F x 𝐿 1 b y dom x C cos n x x C cos n x y b x C cos n x × f x C F x 𝐿 1
237 202 203 235 236 syl3anc φ n 0 x C cos n x × f x C F x 𝐿 1
238 187 237 eqeltrd φ n 0 x C F x cos n x 𝐿 1
239 57 238 syldan φ n 1 N x C F x cos n x 𝐿 1
240 160 175 239 itgmulc2 φ n 1 N cos n X C F x cos n x dx = C cos n X F x cos n x dx
241 160 adantr φ n 1 N x C cos n X
242 121 adantlr φ n 1 N x C F x
243 56 183 sylanl2 φ n 1 N x C cos n x
244 241 242 243 mul12d φ n 1 N x C cos n X F x cos n x = F x cos n X cos n x
245 241 243 mulcomd φ n 1 N x C cos n X cos n x = cos n x cos n X
246 245 oveq2d φ n 1 N x C F x cos n X cos n x = F x cos n x cos n X
247 244 246 eqtrd φ n 1 N x C cos n X F x cos n x = F x cos n x cos n X
248 247 itgeq2dv φ n 1 N C cos n X F x cos n x dx = C F x cos n x cos n X dx
249 240 248 eqtrd φ n 1 N cos n X C F x cos n x dx = C F x cos n x cos n X dx
250 249 oveq1d φ n 1 N cos n X C F x cos n x dx π = C F x cos n x cos n X dx π
251 166 250 eqtr3d φ n 1 N cos n X C F x cos n x dx π = C F x cos n x cos n X dx π
252 158 161 251 3eqtrd φ n 1 N A n cos n X = C F x cos n x cos n X dx π
253 84 81 syldan φ n 1 N C F x sin n x dx π
254 5 fvmpt2 n C F x sin n x dx π B n = C F x sin n x dx π
255 84 253 254 syl2anc φ n 1 N B n = C F x sin n x dx π
256 255 oveq1d φ n 1 N B n sin n X = C F x sin n x dx π sin n X
257 253 recnd φ n 1 N C F x sin n x dx π
258 86 recnd φ n 1 N sin n X
259 257 258 mulcomd φ n 1 N C F x sin n x dx π sin n X = sin n X C F x sin n x dx π
260 84 78 syldan φ n 1 N C F x sin n x dx
261 260 recnd φ n 1 N C F x sin n x dx
262 258 261 164 165 divassd φ n 1 N sin n X C F x sin n x dx π = sin n X C F x sin n x dx π
263 120 adantlr φ n x C F x
264 nnre n n
265 264 adantr n x C n
266 118 adantl n x C x
267 265 266 remulcld n x C n x
268 267 resincld n x C sin n x
269 268 adantll φ n x C sin n x
270 263 269 remulcld φ n x C F x sin n x
271 55 270 sylanl2 φ n 1 N x C F x sin n x
272 178 a1i φ n C V
273 eqidd φ n x C sin n x = x C sin n x
274 eqidd φ n x C F x = x C F x
275 272 269 263 273 274 offval2 φ n x C sin n x × f x C F x = x C sin n x F x
276 269 recnd φ n x C sin n x
277 121 adantlr φ n x C F x
278 276 277 mulcomd φ n x C sin n x F x = F x sin n x
279 278 mpteq2dva φ n x C sin n x F x = x C F x sin n x
280 275 279 eqtr2d φ n x C F x sin n x = x C sin n x × f x C F x
281 sincn sin : cn
282 281 a1i φ n sin : cn
283 191 a1i n C
284 264 recnd n n
285 195 a1i n
286 283 284 285 constcncfg n x C n : C cn
287 283 285 idcncfg n x C x : C cn
288 286 287 mulcncf n x C n x : C cn
289 288 adantl φ n x C n x : C cn
290 282 289 cncfmpt1f φ n x C sin n x : C cn
291 cnmbf C dom vol x C sin n x : C cn x C sin n x MblFn
292 177 290 291 sylancr φ n x C sin n x MblFn
293 141 adantr φ n x C F x 𝐿 1
294 simpr n y dom x C sin n x y dom x C sin n x
295 268 ralrimiva n x C sin n x
296 dmmptg x C sin n x dom x C sin n x = C
297 295 296 syl n dom x C sin n x = C
298 297 adantr n y dom x C sin n x dom x C sin n x = C
299 294 298 eleqtrd n y dom x C sin n x y C
300 eqidd n y C x C sin n x = x C sin n x
301 216 fveq2d x = y sin n x = sin n y
302 301 adantl n y C x = y sin n x = sin n y
303 simpr n y C y C
304 264 adantr n y C n
305 137 303 sselid n y C y
306 304 305 remulcld n y C n y
307 306 resincld n y C sin n y
308 300 302 303 307 fvmptd n y C x C sin n x y = sin n y
309 308 fveq2d n y C x C sin n x y = sin n y
310 abssinbd n y sin n y 1
311 306 310 syl n y C sin n y 1
312 309 311 eqbrtrd n y C x C sin n x y 1
313 299 312 syldan n y dom x C sin n x x C sin n x y 1
314 313 ralrimiva n y dom x C sin n x x C sin n x y 1
315 breq2 b = 1 x C sin n x y b x C sin n x y 1
316 315 ralbidv b = 1 y dom x C sin n x x C sin n x y b y dom x C sin n x x C sin n x y 1
317 316 rspcev 1 y dom x C sin n x x C sin n x y 1 b y dom x C sin n x x C sin n x y b
318 204 314 317 sylancr n b y dom x C sin n x x C sin n x y b
319 318 adantl φ n b y dom x C sin n x x C sin n x y b
320 bddmulibl x C sin n x MblFn x C F x 𝐿 1 b y dom x C sin n x x C sin n x y b x C sin n x × f x C F x 𝐿 1
321 292 293 319 320 syl3anc φ n x C sin n x × f x C F x 𝐿 1
322 280 321 eqeltrd φ n x C F x sin n x 𝐿 1
323 84 322 syldan φ n 1 N x C F x sin n x 𝐿 1
324 258 271 323 itgmulc2 φ n 1 N sin n X C F x sin n x dx = C sin n X F x sin n x dx
325 258 adantr φ n 1 N x C sin n X
326 55 276 sylanl2 φ n 1 N x C sin n x
327 325 242 326 mul12d φ n 1 N x C sin n X F x sin n x = F x sin n X sin n x
328 325 326 mulcomd φ n 1 N x C sin n X sin n x = sin n x sin n X
329 328 oveq2d φ n 1 N x C F x sin n X sin n x = F x sin n x sin n X
330 327 329 eqtrd φ n 1 N x C sin n X F x sin n x = F x sin n x sin n X
331 330 itgeq2dv φ n 1 N C sin n X F x sin n x dx = C F x sin n x sin n X dx
332 324 331 eqtrd φ n 1 N sin n X C F x sin n x dx = C F x sin n x sin n X dx
333 332 oveq1d φ n 1 N sin n X C F x sin n x dx π = C F x sin n x sin n X dx π
334 262 333 eqtr3d φ n 1 N sin n X C F x sin n x dx π = C F x sin n x sin n X dx π
335 256 259 334 3eqtrd φ n 1 N B n sin n X = C F x sin n x sin n X dx π
336 252 335 oveq12d φ n 1 N A n cos n X + B n sin n X = C F x cos n x cos n X dx π + C F x sin n x sin n X dx π
337 56 169 sylanl2 φ n 1 N x C F x
338 57 209 sylan φ n 1 N x C cos n x
339 62 adantr φ n 1 N x C cos n X
340 338 339 remulcld φ n 1 N x C cos n x cos n X
341 337 340 remulcld φ n 1 N x C F x cos n x cos n X
342 242 243 241 mul13d φ n 1 N x C F x cos n x cos n X = cos n X cos n x F x
343 243 242 mulcomd φ n 1 N x C cos n x F x = F x cos n x
344 343 oveq2d φ n 1 N x C cos n X cos n x F x = cos n X F x cos n x
345 342 344 eqtrd φ n 1 N x C F x cos n x cos n X = cos n X F x cos n x
346 345 mpteq2dva φ n 1 N x C F x cos n x cos n X = x C cos n X F x cos n x
347 160 175 239 iblmulc2 φ n 1 N x C cos n X F x cos n x 𝐿 1
348 346 347 eqeltrd φ n 1 N x C F x cos n x cos n X 𝐿 1
349 341 348 itgcl φ n 1 N C F x cos n x cos n X dx
350 84 268 sylan φ n 1 N x C sin n x
351 86 adantr φ n 1 N x C sin n X
352 350 351 remulcld φ n 1 N x C sin n x sin n X
353 337 352 remulcld φ n 1 N x C F x sin n x sin n X
354 242 326 325 mul13d φ n 1 N x C F x sin n x sin n X = sin n X sin n x F x
355 326 242 mulcomd φ n 1 N x C sin n x F x = F x sin n x
356 355 oveq2d φ n 1 N x C sin n X sin n x F x = sin n X F x sin n x
357 354 356 eqtrd φ n 1 N x C F x sin n x sin n X = sin n X F x sin n x
358 357 mpteq2dva φ n 1 N x C F x sin n x sin n X = x C sin n X F x sin n x
359 258 271 323 iblmulc2 φ n 1 N x C sin n X F x sin n x 𝐿 1
360 358 359 eqeltrd φ n 1 N x C F x sin n x sin n X 𝐿 1
361 353 360 itgcl φ n 1 N C F x sin n x sin n X dx
362 349 361 164 165 divdird φ n 1 N C F x cos n x cos n X dx + C F x sin n x sin n X dx π = C F x cos n x cos n X dx π + C F x sin n x sin n X dx π
363 55 nncnd n 1 N n
364 363 ad2antlr φ n 1 N x C n
365 109 adantl φ n 1 N x C x
366 6 recnd φ X
367 366 ad2antrr φ n 1 N x C X
368 364 365 367 subdid φ n 1 N x C n x X = n x n X
369 368 fveq2d φ n 1 N x C cos n x X = cos n x n X
370 364 365 mulcld φ n 1 N x C n x
371 364 367 mulcld φ n 1 N x C n X
372 cossub n x n X cos n x n X = cos n x cos n X + sin n x sin n X
373 370 371 372 syl2anc φ n 1 N x C cos n x n X = cos n x cos n X + sin n x sin n X
374 369 373 eqtrd φ n 1 N x C cos n x X = cos n x cos n X + sin n x sin n X
375 374 oveq2d φ n 1 N x C F x cos n x X = F x cos n x cos n X + sin n x sin n X
376 340 recnd φ n 1 N x C cos n x cos n X
377 352 recnd φ n 1 N x C sin n x sin n X
378 242 376 377 adddid φ n 1 N x C F x cos n x cos n X + sin n x sin n X = F x cos n x cos n X + F x sin n x sin n X
379 375 378 eqtrd φ n 1 N x C F x cos n x X = F x cos n x cos n X + F x sin n x sin n X
380 379 itgeq2dv φ n 1 N C F x cos n x X dx = C F x cos n x cos n X + F x sin n x sin n X dx
381 341 348 353 360 itgadd φ n 1 N C F x cos n x cos n X + F x sin n x sin n X dx = C F x cos n x cos n X dx + C F x sin n x sin n X dx
382 380 381 eqtr2d φ n 1 N C F x cos n x cos n X dx + C F x sin n x sin n X dx = C F x cos n x X dx
383 382 oveq1d φ n 1 N C F x cos n x cos n X dx + C F x sin n x sin n X dx π = C F x cos n x X dx π
384 336 362 383 3eqtr2d φ n 1 N A n cos n X + B n sin n X = C F x cos n x X dx π
385 384 sumeq2dv φ n = 1 N A n cos n X + B n sin n X = n = 1 N C F x cos n x X dx π
386 59 adantr φ n 1 N x C n
387 118 adantl φ n 1 N x C x
388 6 ad2antrr φ n 1 N x C X
389 387 388 resubcld φ n 1 N x C x X
390 386 389 remulcld φ n 1 N x C n x X
391 390 recoscld φ n 1 N x C cos n x X
392 337 391 remulcld φ n 1 N x C F x cos n x X
393 178 a1i φ n 1 N C V
394 eqidd φ n 1 N x C cos n x X = x C cos n x X
395 eqidd φ n 1 N x C F x = x C F x
396 393 391 337 394 395 offval2 φ n 1 N x C cos n x X × f x C F x = x C cos n x X F x
397 391 recnd φ n 1 N x C cos n x X
398 397 242 mulcomd φ n 1 N x C cos n x X F x = F x cos n x X
399 398 mpteq2dva φ n 1 N x C cos n x X F x = x C F x cos n x X
400 396 399 eqtr2d φ n 1 N x C F x cos n x X = x C cos n x X × f x C F x
401 188 a1i φ n 1 N cos : cn
402 84 286 syl φ n 1 N x C n : C cn
403 84 287 syl φ n 1 N x C x : C cn
404 191 a1i φ n 1 N C
405 366 adantr φ n 1 N X
406 195 a1i φ n 1 N
407 404 405 406 constcncfg φ n 1 N x C X : C cn
408 403 407 subcncf φ n 1 N x C x X : C cn
409 402 408 mulcncf φ n 1 N x C n x X : C cn
410 401 409 cncfmpt1f φ n 1 N x C cos n x X : C cn
411 cnmbf C dom vol x C cos n x X : C cn x C cos n x X MblFn
412 177 410 411 sylancr φ n 1 N x C cos n x X MblFn
413 141 adantr φ n 1 N x C F x 𝐿 1
414 simpr φ n 1 N y dom x C cos n x X y dom x C cos n x X
415 391 ralrimiva φ n 1 N x C cos n x X
416 dmmptg x C cos n x X dom x C cos n x X = C
417 415 416 syl φ n 1 N dom x C cos n x X = C
418 417 adantr φ n 1 N y dom x C cos n x X dom x C cos n x X = C
419 414 418 eleqtrd φ n 1 N y dom x C cos n x X y C
420 eqidd φ n 1 N y C x C cos n x X = x C cos n x X
421 oveq1 x = y x X = y X
422 421 oveq2d x = y n x X = n y X
423 422 fveq2d x = y cos n x X = cos n y X
424 423 adantl φ n 1 N y C x = y cos n x X = cos n y X
425 simpr φ n 1 N y C y C
426 59 adantr φ n 1 N y C n
427 57 221 sylan φ n 1 N y C y
428 6 ad2antrr φ n 1 N y C X
429 427 428 resubcld φ n 1 N y C y X
430 426 429 remulcld φ n 1 N y C n y X
431 430 recoscld φ n 1 N y C cos n y X
432 420 424 425 431 fvmptd φ n 1 N y C x C cos n x X y = cos n y X
433 432 fveq2d φ n 1 N y C x C cos n x X y = cos n y X
434 abscosbd n y X cos n y X 1
435 430 434 syl φ n 1 N y C cos n y X 1
436 433 435 eqbrtrd φ n 1 N y C x C cos n x X y 1
437 419 436 syldan φ n 1 N y dom x C cos n x X x C cos n x X y 1
438 437 ralrimiva φ n 1 N y dom x C cos n x X x C cos n x X y 1
439 breq2 b = 1 x C cos n x X y b x C cos n x X y 1
440 439 ralbidv b = 1 y dom x C cos n x X x C cos n x X y b y dom x C cos n x X x C cos n x X y 1
441 440 rspcev 1 y dom x C cos n x X x C cos n x X y 1 b y dom x C cos n x X x C cos n x X y b
442 204 438 441 sylancr φ n 1 N b y dom x C cos n x X x C cos n x X y b
443 bddmulibl x C cos n x X MblFn x C F x 𝐿 1 b y dom x C cos n x X x C cos n x X y b x C cos n x X × f x C F x 𝐿 1
444 412 413 442 443 syl3anc φ n 1 N x C cos n x X × f x C F x 𝐿 1
445 400 444 eqeltrd φ n 1 N x C F x cos n x X 𝐿 1
446 392 445 itgcl φ n 1 N C F x cos n x X dx
447 30 143 446 103 fsumdivc φ n = 1 N C F x cos n x X dx π = n = 1 N C F x cos n x X dx π
448 177 a1i φ C dom vol
449 anass φ n 1 N x C φ n 1 N x C
450 ancom n 1 N x C x C n 1 N
451 450 anbi2i φ n 1 N x C φ x C n 1 N
452 449 451 bitri φ n 1 N x C φ x C n 1 N
453 452 392 sylbir φ x C n 1 N F x cos n x X
454 448 30 453 445 itgfsum φ x C n = 1 N F x cos n x X 𝐿 1 C n = 1 N F x cos n x X dx = n = 1 N C F x cos n x X dx
455 454 simprd φ C n = 1 N F x cos n x X dx = n = 1 N C F x cos n x X dx
456 455 eqcomd φ n = 1 N C F x cos n x X dx = C n = 1 N F x cos n x X dx
457 456 oveq1d φ n = 1 N C F x cos n x X dx π = C n = 1 N F x cos n x X dx π
458 385 447 457 3eqtr2d φ n = 1 N A n cos n X + B n sin n X = C n = 1 N F x cos n x X dx π
459 154 458 oveq12d φ A 0 2 + n = 1 N A n cos n X + B n sin n X = C 1 2 F x dx π + C n = 1 N F x cos n x X dx π
460 9 adantr φ x C N
461 eqid D N = D N
462 eqid s 1 2 + n = 1 N cos n s π = s 1 2 + n = 1 N cos n s π
463 8 460 461 462 dirkertrigeq φ x C D N = s 1 2 + n = 1 N cos n s π
464 oveq2 s = x X n s = n x X
465 464 fveq2d s = x X cos n s = cos n x X
466 465 sumeq2sdv s = x X n = 1 N cos n s = n = 1 N cos n x X
467 466 oveq2d s = x X 1 2 + n = 1 N cos n s = 1 2 + n = 1 N cos n x X
468 467 oveq1d s = x X 1 2 + n = 1 N cos n s π = 1 2 + n = 1 N cos n x X π
469 468 adantl φ x C s = x X 1 2 + n = 1 N cos n s π = 1 2 + n = 1 N cos n x X π
470 6 adantr φ x C X
471 119 470 resubcld φ x C x X
472 halfre 1 2
473 472 a1i φ x C 1 2
474 fzfid φ x C 1 N Fin
475 391 an32s φ x C n 1 N cos n x X
476 474 475 fsumrecl φ x C n = 1 N cos n x X
477 473 476 readdcld φ x C 1 2 + n = 1 N cos n x X
478 46 a1i φ x C π
479 50 a1i φ x C π 0
480 477 478 479 redivcld φ x C 1 2 + n = 1 N cos n x X π
481 463 469 471 480 fvmptd φ x C D N x X = 1 2 + n = 1 N cos n x X π
482 481 480 eqeltrd φ x C D N x X
483 120 482 remulcld φ x C F x D N x X
484 178 a1i φ C V
485 eqidd φ x C D N x X = x C D N x X
486 eqidd φ x C F x = x C F x
487 484 482 120 485 486 offval2 φ x C D N x X × f x C F x = x C D N x X F x
488 482 recnd φ x C D N x X
489 488 121 mulcomd φ x C D N x X F x = F x D N x X
490 489 mpteq2dva φ x C D N x X F x = x C F x D N x X
491 487 490 eqtr2d φ x C F x D N x X = x C D N x X × f x C F x
492 eqid x π π D N x X = x π π D N x X
493 eqid x D N x X = x D N x X
494 195 a1i φ
495 cncfss cn cn
496 190 494 495 sylancr φ cn cn
497 simpr φ x x
498 6 adantr φ x X
499 497 498 resubcld φ x x X
500 eqid x x X = x x X
501 499 500 fmptd φ x x X :
502 190 a1i φ
503 502 494 idcncfg φ x x : cn
504 502 366 494 constcncfg φ x X : cn
505 503 504 subcncf φ x x X : cn
506 cncffvrn x x X : cn x x X : cn x x X :
507 190 505 506 sylancr φ x x X : cn x x X :
508 501 507 mpbird φ x x X : cn
509 8 dirkercncf N D N : cn
510 9 509 syl φ D N : cn
511 508 510 cncfcompt φ x D N x X : cn
512 496 511 sseldd φ x D N x X : cn
513 46 renegcli π
514 iccssre π π π π
515 513 46 514 mp2an π π
516 515 a1i φ π π
517 8 dirkerf N D N :
518 9 517 syl φ D N :
519 518 adantr φ x π π D N :
520 516 sselda φ x π π x
521 6 adantr φ x π π X
522 520 521 resubcld φ x π π x X
523 519 522 ffvelrnd φ x π π D N x X
524 523 recnd φ x π π D N x X
525 493 512 516 494 524 cncfmptssg φ x π π D N x X : π π cn
526 133 a1i φ C π π
527 492 525 526 494 488 cncfmptssg φ x C D N x X : C cn
528 cnmbf C dom vol x C D N x X : C cn x C D N x X MblFn
529 177 527 528 sylancr φ x C D N x X MblFn
530 513 a1i φ π
531 0red φ 0
532 negpilt0 π < 0
533 532 a1i φ π < 0
534 49 a1i φ 0 < π
535 530 531 102 533 534 lttrd φ π < π
536 530 102 535 ltled φ π π
537 493 512 516 502 523 cncfmptssg φ x π π D N x X : π π cn
538 530 102 536 537 evthiccabs φ c π π y π π x π π D N x X y x π π D N x X c z π π w π π x π π D N x X z x π π D N x X w
539 538 simpld φ c π π y π π x π π D N x X y x π π D N x X c
540 eqidd φ y π π x π π D N x X = x π π D N x X
541 421 fveq2d x = y D N x X = D N y X
542 541 adantl φ y π π x = y D N x X = D N y X
543 simpr φ y π π y π π
544 518 adantr φ y π π D N :
545 515 543 sselid φ y π π y
546 6 adantr φ y π π X
547 545 546 resubcld φ y π π y X
548 544 547 ffvelrnd φ y π π D N y X
549 540 542 543 548 fvmptd φ y π π x π π D N x X y = D N y X
550 549 fveq2d φ y π π x π π D N x X y = D N y X
551 550 adantlr φ c π π y π π x π π D N x X y = D N y X
552 eqidd φ c π π x π π D N x X = x π π D N x X
553 oveq1 x = c x X = c X
554 553 fveq2d x = c D N x X = D N c X
555 554 adantl φ c π π x = c D N x X = D N c X
556 simpr φ c π π c π π
557 518 adantr φ c π π D N :
558 515 556 sselid φ c π π c
559 6 adantr φ c π π X
560 558 559 resubcld φ c π π c X
561 557 560 ffvelrnd φ c π π D N c X
562 552 555 556 561 fvmptd φ c π π x π π D N x X c = D N c X
563 562 fveq2d φ c π π x π π D N x X c = D N c X
564 563 adantr φ c π π y π π x π π D N x X c = D N c X
565 551 564 breq12d φ c π π y π π x π π D N x X y x π π D N x X c D N y X D N c X
566 565 ralbidva φ c π π y π π x π π D N x X y x π π D N x X c y π π D N y X D N c X
567 566 rexbidva φ c π π y π π x π π D N x X y x π π D N x X c c π π y π π D N y X D N c X
568 539 567 mpbid φ c π π y π π D N y X D N c X
569 561 recnd φ c π π D N c X
570 569 abscld φ c π π D N c X
571 570 3adant3 φ c π π y π π D N y X D N c X D N c X
572 nfv y φ
573 nfv y c π π
574 nfra1 y y π π D N y X D N c X
575 572 573 574 nf3an y φ c π π y π π D N y X D N c X
576 simpr φ y dom x C D N x X y dom x C D N x X
577 482 ralrimiva φ x C D N x X
578 dmmptg x C D N x X dom x C D N x X = C
579 577 578 syl φ dom x C D N x X = C
580 579 adantr φ y dom x C D N x X dom x C D N x X = C
581 576 580 eleqtrd φ y dom x C D N x X y C
582 581 3ad2antl1 φ c π π y π π D N y X D N c X y dom x C D N x X y C
583 eqidd φ y C x C D N x X = x C D N x X
584 541 adantl φ y C x = y D N x X = D N y X
585 simpr φ y C y C
586 518 adantr φ y C D N :
587 137 585 sselid φ y C y
588 6 adantr φ y C X
589 587 588 resubcld φ y C y X
590 586 589 ffvelrnd φ y C D N y X
591 583 584 585 590 fvmptd φ y C x C D N x X y = D N y X
592 591 fveq2d φ y C x C D N x X y = D N y X
593 592 adantlr φ y π π D N y X D N c X y C x C D N x X y = D N y X
594 simplr φ y π π D N y X D N c X y C y π π D N y X D N c X
595 133 sseli y C y π π
596 595 adantl φ y π π D N y X D N c X y C y π π
597 rspa y π π D N y X D N c X y π π D N y X D N c X
598 594 596 597 syl2anc φ y π π D N y X D N c X y C D N y X D N c X
599 593 598 eqbrtrd φ y π π D N y X D N c X y C x C D N x X y D N c X
600 599 3adantl2 φ c π π y π π D N y X D N c X y C x C D N x X y D N c X
601 582 600 syldan φ c π π y π π D N y X D N c X y dom x C D N x X x C D N x X y D N c X
602 601 ex φ c π π y π π D N y X D N c X y dom x C D N x X x C D N x X y D N c X
603 575 602 ralrimi φ c π π y π π D N y X D N c X y dom x C D N x X x C D N x X y D N c X
604 breq2 b = D N c X x C D N x X y b x C D N x X y D N c X
605 604 ralbidv b = D N c X y dom x C D N x X x C D N x X y b y dom x C D N x X x C D N x X y D N c X
606 605 rspcev D N c X y dom x C D N x X x C D N x X y D N c X b y dom x C D N x X x C D N x X y b
607 571 603 606 syl2anc φ c π π y π π D N y X D N c X b y dom x C D N x X x C D N x X y b
608 607 rexlimdv3a φ c π π y π π D N y X D N c X b y dom x C D N x X x C D N x X y b
609 568 608 mpd φ b y dom x C D N x X x C D N x X y b
610 bddmulibl x C D N x X MblFn x C F x 𝐿 1 b y dom x C D N x X x C D N x X y b x C D N x X × f x C F x 𝐿 1
611 529 141 609 610 syl3anc φ x C D N x X × f x C F x 𝐿 1
612 491 611 eqeltrd φ x C F x D N x X 𝐿 1
613 143 483 612 itgmulc2 φ π C F x D N x X dx = C π F x D N x X dx
614 143 adantr φ x C π
615 121 488 614 mul13d φ x C F x D N x X π = π D N x X F x
616 489 oveq2d φ x C π D N x X F x = π F x D N x X
617 615 616 eqtrd φ x C F x D N x X π = π F x D N x X
618 617 itgeq2dv φ C F x D N x X π dx = C π F x D N x X dx
619 613 618 eqtr4d φ π C F x D N x X dx = C F x D N x X π dx
620 149 adantr φ x C 1 2
621 620 121 mulcomd φ x C 1 2 F x = F x 1 2
622 397 an32s φ x C n 1 N cos n x X
623 474 121 622 fsummulc2 φ x C F x n = 1 N cos n x X = n = 1 N F x cos n x X
624 623 eqcomd φ x C n = 1 N F x cos n x X = F x n = 1 N cos n x X
625 621 624 oveq12d φ x C 1 2 F x + n = 1 N F x cos n x X = F x 1 2 + F x n = 1 N cos n x X
626 474 622 fsumcl φ x C n = 1 N cos n x X
627 121 620 626 adddid φ x C F x 1 2 + n = 1 N cos n x X = F x 1 2 + F x n = 1 N cos n x X
628 481 oveq1d φ x C D N x X π = 1 2 + n = 1 N cos n x X π π
629 620 626 addcld φ x C 1 2 + n = 1 N cos n x X
630 629 614 479 divcan1d φ x C 1 2 + n = 1 N cos n x X π π = 1 2 + n = 1 N cos n x X
631 628 630 eqtr2d φ x C 1 2 + n = 1 N cos n x X = D N x X π
632 631 oveq2d φ x C F x 1 2 + n = 1 N cos n x X = F x D N x X π
633 625 627 632 3eqtr2rd φ x C F x D N x X π = 1 2 F x + n = 1 N F x cos n x X
634 633 itgeq2dv φ C F x D N x X π dx = C 1 2 F x + n = 1 N F x cos n x X dx
635 remulcl 1 2 F x 1 2 F x
636 472 120 635 sylancr φ x C 1 2 F x
637 149 120 141 iblmulc2 φ x C 1 2 F x 𝐿 1
638 392 an32s φ x C n 1 N F x cos n x X
639 474 638 fsumrecl φ x C n = 1 N F x cos n x X
640 454 simpld φ x C n = 1 N F x cos n x X 𝐿 1
641 636 637 639 640 itgadd φ C 1 2 F x + n = 1 N F x cos n x X dx = C 1 2 F x dx + C n = 1 N F x cos n x X dx
642 619 634 641 3eqtrrd φ C 1 2 F x dx + C n = 1 N F x cos n x X dx = π C F x D N x X dx
643 642 oveq1d φ C 1 2 F x dx + C n = 1 N F x cos n x X dx π = π C F x D N x X dx π
644 636 637 itgcl φ C 1 2 F x dx
645 639 640 itgcl φ C n = 1 N F x cos n x X dx
646 644 645 143 103 divdird φ C 1 2 F x dx + C n = 1 N F x cos n x X dx π = C 1 2 F x dx π + C n = 1 N F x cos n x X dx π
647 483 612 itgcl φ C F x D N x X dx
648 647 143 103 divcan3d φ π C F x D N x X dx π = C F x D N x X dx
649 643 646 648 3eqtr3d φ C 1 2 F x dx π + C n = 1 N F x cos n x X dx π = C F x D N x X dx
650 91 459 649 3eqtrd φ S N = C F x D N x X dx