Metamath Proof Explorer


Theorem fourierdlem85

Description: Limit of the function G at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem85.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem85.f φ F :
fourierdlem85.x φ X ran V
fourierdlem85.y φ Y F X +∞ lim X
fourierdlem85.w φ W
fourierdlem85.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem85.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem85.u U = s π π H s K s
fourierdlem85.n φ N
fourierdlem85.s S = s π π sin N + 1 2 s
fourierdlem85.g G = s π π U s S s
fourierdlem85.m φ M
fourierdlem85.v φ V P M
fourierdlem85.r φ i 0 ..^ M R F V i V i + 1 lim V i
fourierdlem85.q Q = i 0 M V i X
fourierdlem85.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
fourierdlem85.i I = D F
fourierdlem85.ifn φ i 0 ..^ M I V i V i + 1 : V i V i + 1
fourierdlem85.e φ E I X +∞ lim X
fourierdlem85.a A = if V i = X E R if V i < X W Y Q i K Q i S Q i
Assertion fourierdlem85 φ i 0 ..^ M A G Q i Q i + 1 lim Q i

Proof

Step Hyp Ref Expression
1 fourierdlem85.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
2 fourierdlem85.f φ F :
3 fourierdlem85.x φ X ran V
4 fourierdlem85.y φ Y F X +∞ lim X
5 fourierdlem85.w φ W
6 fourierdlem85.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
7 fourierdlem85.k K = s π π if s = 0 1 s 2 sin s 2
8 fourierdlem85.u U = s π π H s K s
9 fourierdlem85.n φ N
10 fourierdlem85.s S = s π π sin N + 1 2 s
11 fourierdlem85.g G = s π π U s S s
12 fourierdlem85.m φ M
13 fourierdlem85.v φ V P M
14 fourierdlem85.r φ i 0 ..^ M R F V i V i + 1 lim V i
15 fourierdlem85.q Q = i 0 M V i X
16 fourierdlem85.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
17 fourierdlem85.i I = D F
18 fourierdlem85.ifn φ i 0 ..^ M I V i V i + 1 : V i V i + 1
19 fourierdlem85.e φ E I X +∞ lim X
20 fourierdlem85.a A = if V i = X E R if V i < X W Y Q i K Q i S Q i
21 eqid s Q i Q i + 1 U s = s Q i Q i + 1 U s
22 eqid s Q i Q i + 1 S s = s Q i Q i + 1 S s
23 eqid s Q i Q i + 1 U s S s = s Q i Q i + 1 U s S s
24 pire π
25 24 renegcli π
26 25 rexri π *
27 26 a1i φ i 0 ..^ M s Q i Q i + 1 π *
28 24 rexri π *
29 28 a1i φ i 0 ..^ M s Q i Q i + 1 π *
30 24 a1i φ π
31 30 renegcld φ π
32 1 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
33 12 32 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
34 13 33 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
35 34 simpld φ V 0 M
36 elmapi V 0 M V : 0 M
37 frn V : 0 M ran V
38 35 36 37 3syl φ ran V
39 38 3 sseldd φ X
40 31 30 39 1 16 12 13 15 fourierdlem14 φ Q O M
41 16 12 40 fourierdlem15 φ Q : 0 M π π
42 41 adantr φ i 0 ..^ M Q : 0 M π π
43 42 adantr φ i 0 ..^ M s Q i Q i + 1 Q : 0 M π π
44 simplr φ i 0 ..^ M s Q i Q i + 1 i 0 ..^ M
45 27 29 43 44 fourierdlem8 φ i 0 ..^ M s Q i Q i + 1 Q i Q i + 1 π π
46 ioossicc Q i Q i + 1 Q i Q i + 1
47 46 sseli s Q i Q i + 1 s Q i Q i + 1
48 47 adantl φ i 0 ..^ M s Q i Q i + 1 s Q i Q i + 1
49 45 48 sseldd φ i 0 ..^ M s Q i Q i + 1 s π π
50 ioossre X +∞
51 50 a1i φ X +∞
52 2 51 fssresd φ F X +∞ : X +∞
53 ax-resscn
54 51 53 sstrdi φ X +∞
55 eqid TopOpen fld = TopOpen fld
56 pnfxr +∞ *
57 56 a1i φ +∞ *
58 39 ltpnfd φ X < +∞
59 55 57 39 58 lptioo1cn φ X limPt TopOpen fld X +∞
60 52 54 59 4 limcrecl φ Y
61 2 39 60 5 6 fourierdlem9 φ H : π π
62 53 a1i φ
63 61 62 fssd φ H : π π
64 63 ad2antrr φ i 0 ..^ M s Q i Q i + 1 H : π π
65 64 49 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 H s
66 7 fourierdlem43 K : π π
67 66 a1i φ i 0 ..^ M s Q i Q i + 1 K : π π
68 67 49 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 K s
69 68 recnd φ i 0 ..^ M s Q i Q i + 1 K s
70 65 69 mulcld φ i 0 ..^ M s Q i Q i + 1 H s K s
71 8 fvmpt2 s π π H s K s U s = H s K s
72 49 70 71 syl2anc φ i 0 ..^ M s Q i Q i + 1 U s = H s K s
73 72 70 eqeltrd φ i 0 ..^ M s Q i Q i + 1 U s
74 9 10 fourierdlem18 φ S : π π cn
75 cncff S : π π cn S : π π
76 74 75 syl φ S : π π
77 76 adantr φ i 0 ..^ M S : π π
78 77 adantr φ i 0 ..^ M s Q i Q i + 1 S : π π
79 78 49 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 S s
80 79 recnd φ i 0 ..^ M s Q i Q i + 1 S s
81 eqid s Q i Q i + 1 H s = s Q i Q i + 1 H s
82 eqid s Q i Q i + 1 K s = s Q i Q i + 1 K s
83 eqid s Q i Q i + 1 H s K s = s Q i Q i + 1 H s K s
84 eqid if V i = X E R if V i < X W Y Q i = if V i = X E R if V i < X W Y Q i
85 39 1 2 3 4 5 6 12 13 14 15 16 17 18 19 84 fourierdlem75 φ i 0 ..^ M if V i = X E R if V i < X W Y Q i H Q i Q i + 1 lim Q i
86 61 adantr φ i 0 ..^ M H : π π
87 26 a1i φ i 0 ..^ M π *
88 28 a1i φ i 0 ..^ M π *
89 simpr φ i 0 ..^ M i 0 ..^ M
90 87 88 42 89 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 π π
91 46 90 sstrid φ i 0 ..^ M Q i Q i + 1 π π
92 86 91 feqresmpt φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 H s
93 92 oveq1d φ i 0 ..^ M H Q i Q i + 1 lim Q i = s Q i Q i + 1 H s lim Q i
94 85 93 eleqtrd φ i 0 ..^ M if V i = X E R if V i < X W Y Q i s Q i Q i + 1 H s lim Q i
95 limcresi K lim Q i K Q i Q i + 1 lim Q i
96 ssid
97 cncfss π π cn π π cn
98 53 96 97 mp2an π π cn π π cn
99 7 fourierdlem62 K : π π cn
100 98 99 sselii K : π π cn
101 100 a1i φ i 0 ..^ M K : π π cn
102 elfzofz i 0 ..^ M i 0 M
103 102 adantl φ i 0 ..^ M i 0 M
104 42 103 ffvelrnd φ i 0 ..^ M Q i π π
105 101 104 cnlimci φ i 0 ..^ M K Q i K lim Q i
106 95 105 sselid φ i 0 ..^ M K Q i K Q i Q i + 1 lim Q i
107 cncff K : π π cn K : π π
108 100 107 mp1i φ i 0 ..^ M K : π π
109 108 91 feqresmpt φ i 0 ..^ M K Q i Q i + 1 = s Q i Q i + 1 K s
110 109 oveq1d φ i 0 ..^ M K Q i Q i + 1 lim Q i = s Q i Q i + 1 K s lim Q i
111 106 110 eleqtrd φ i 0 ..^ M K Q i s Q i Q i + 1 K s lim Q i
112 81 82 83 65 69 94 111 mullimc φ i 0 ..^ M if V i = X E R if V i < X W Y Q i K Q i s Q i Q i + 1 H s K s lim Q i
113 72 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 U s = s Q i Q i + 1 H s K s
114 113 oveq1d φ i 0 ..^ M s Q i Q i + 1 U s lim Q i = s Q i Q i + 1 H s K s lim Q i
115 112 114 eleqtrrd φ i 0 ..^ M if V i = X E R if V i < X W Y Q i K Q i s Q i Q i + 1 U s lim Q i
116 limcresi S lim Q i S Q i Q i + 1 lim Q i
117 74 adantr φ i 0 ..^ M S : π π cn
118 117 104 cnlimci φ i 0 ..^ M S Q i S lim Q i
119 116 118 sselid φ i 0 ..^ M S Q i S Q i Q i + 1 lim Q i
120 77 91 feqresmpt φ i 0 ..^ M S Q i Q i + 1 = s Q i Q i + 1 S s
121 120 oveq1d φ i 0 ..^ M S Q i Q i + 1 lim Q i = s Q i Q i + 1 S s lim Q i
122 119 121 eleqtrd φ i 0 ..^ M S Q i s Q i Q i + 1 S s lim Q i
123 21 22 23 73 80 115 122 mullimc φ i 0 ..^ M if V i = X E R if V i < X W Y Q i K Q i S Q i s Q i Q i + 1 U s S s lim Q i
124 20 123 eqeltrid φ i 0 ..^ M A s Q i Q i + 1 U s S s lim Q i
125 11 reseq1i G Q i Q i + 1 = s π π U s S s Q i Q i + 1
126 91 resmptd φ i 0 ..^ M s π π U s S s Q i Q i + 1 = s Q i Q i + 1 U s S s
127 125 126 eqtr2id φ i 0 ..^ M s Q i Q i + 1 U s S s = G Q i Q i + 1
128 127 oveq1d φ i 0 ..^ M s Q i Q i + 1 U s S s lim Q i = G Q i Q i + 1 lim Q i
129 124 128 eleqtrd φ i 0 ..^ M A G Q i Q i + 1 lim Q i