Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem85.p |
|
2 |
|
fourierdlem85.f |
|
3 |
|
fourierdlem85.x |
|
4 |
|
fourierdlem85.y |
|
5 |
|
fourierdlem85.w |
|
6 |
|
fourierdlem85.h |
|
7 |
|
fourierdlem85.k |
|
8 |
|
fourierdlem85.u |
|
9 |
|
fourierdlem85.n |
|
10 |
|
fourierdlem85.s |
|
11 |
|
fourierdlem85.g |
|
12 |
|
fourierdlem85.m |
|
13 |
|
fourierdlem85.v |
|
14 |
|
fourierdlem85.r |
|
15 |
|
fourierdlem85.q |
|
16 |
|
fourierdlem85.o |
|
17 |
|
fourierdlem85.i |
|
18 |
|
fourierdlem85.ifn |
|
19 |
|
fourierdlem85.e |
|
20 |
|
fourierdlem85.a |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
pire |
|
25 |
24
|
renegcli |
|
26 |
25
|
rexri |
|
27 |
26
|
a1i |
|
28 |
24
|
rexri |
|
29 |
28
|
a1i |
|
30 |
24
|
a1i |
|
31 |
30
|
renegcld |
|
32 |
1
|
fourierdlem2 |
|
33 |
12 32
|
syl |
|
34 |
13 33
|
mpbid |
|
35 |
34
|
simpld |
|
36 |
|
elmapi |
|
37 |
|
frn |
|
38 |
35 36 37
|
3syl |
|
39 |
38 3
|
sseldd |
|
40 |
31 30 39 1 16 12 13 15
|
fourierdlem14 |
|
41 |
16 12 40
|
fourierdlem15 |
|
42 |
41
|
adantr |
|
43 |
42
|
adantr |
|
44 |
|
simplr |
|
45 |
27 29 43 44
|
fourierdlem8 |
|
46 |
|
ioossicc |
|
47 |
46
|
sseli |
|
48 |
47
|
adantl |
|
49 |
45 48
|
sseldd |
|
50 |
|
ioossre |
|
51 |
50
|
a1i |
|
52 |
2 51
|
fssresd |
|
53 |
|
ax-resscn |
|
54 |
51 53
|
sstrdi |
|
55 |
|
eqid |
|
56 |
|
pnfxr |
|
57 |
56
|
a1i |
|
58 |
39
|
ltpnfd |
|
59 |
55 57 39 58
|
lptioo1cn |
|
60 |
52 54 59 4
|
limcrecl |
|
61 |
2 39 60 5 6
|
fourierdlem9 |
|
62 |
53
|
a1i |
|
63 |
61 62
|
fssd |
|
64 |
63
|
ad2antrr |
|
65 |
64 49
|
ffvelrnd |
|
66 |
7
|
fourierdlem43 |
|
67 |
66
|
a1i |
|
68 |
67 49
|
ffvelrnd |
|
69 |
68
|
recnd |
|
70 |
65 69
|
mulcld |
|
71 |
8
|
fvmpt2 |
|
72 |
49 70 71
|
syl2anc |
|
73 |
72 70
|
eqeltrd |
|
74 |
9 10
|
fourierdlem18 |
|
75 |
|
cncff |
|
76 |
74 75
|
syl |
|
77 |
76
|
adantr |
|
78 |
77
|
adantr |
|
79 |
78 49
|
ffvelrnd |
|
80 |
79
|
recnd |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
|
eqid |
|
85 |
39 1 2 3 4 5 6 12 13 14 15 16 17 18 19 84
|
fourierdlem75 |
|
86 |
61
|
adantr |
|
87 |
26
|
a1i |
|
88 |
28
|
a1i |
|
89 |
|
simpr |
|
90 |
87 88 42 89
|
fourierdlem8 |
|
91 |
46 90
|
sstrid |
|
92 |
86 91
|
feqresmpt |
|
93 |
92
|
oveq1d |
|
94 |
85 93
|
eleqtrd |
|
95 |
|
limcresi |
|
96 |
|
ssid |
|
97 |
|
cncfss |
|
98 |
53 96 97
|
mp2an |
|
99 |
7
|
fourierdlem62 |
|
100 |
98 99
|
sselii |
|
101 |
100
|
a1i |
|
102 |
|
elfzofz |
|
103 |
102
|
adantl |
|
104 |
42 103
|
ffvelrnd |
|
105 |
101 104
|
cnlimci |
|
106 |
95 105
|
sselid |
|
107 |
|
cncff |
|
108 |
100 107
|
mp1i |
|
109 |
108 91
|
feqresmpt |
|
110 |
109
|
oveq1d |
|
111 |
106 110
|
eleqtrd |
|
112 |
81 82 83 65 69 94 111
|
mullimc |
|
113 |
72
|
mpteq2dva |
|
114 |
113
|
oveq1d |
|
115 |
112 114
|
eleqtrrd |
|
116 |
|
limcresi |
|
117 |
74
|
adantr |
|
118 |
117 104
|
cnlimci |
|
119 |
116 118
|
sselid |
|
120 |
77 91
|
feqresmpt |
|
121 |
120
|
oveq1d |
|
122 |
119 121
|
eleqtrd |
|
123 |
21 22 23 73 80 115 122
|
mullimc |
|
124 |
20 123
|
eqeltrid |
|
125 |
11
|
reseq1i |
|
126 |
91
|
resmptd |
|
127 |
125 126
|
eqtr2id |
|
128 |
127
|
oveq1d |
|
129 |
124 128
|
eleqtrd |
|