Metamath Proof Explorer


Theorem fourierdlem86

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem86.f φ F :
fourierdlem86.xre φ X
fourierdlem86.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem86.m φ M
fourierdlem86.v φ V P M
fourierdlem86.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
fourierdlem86.r φ i 0 ..^ M R F V i V i + 1 lim V i
fourierdlem86.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
fourierdlem86.a φ A
fourierdlem86.b φ B
fourierdlem86.altb φ A < B
fourierdlem86.ab φ A B π π
fourierdlem86.n0 φ ¬ 0 A B
fourierdlem86.c φ C
fourierdlem86.o O = s A B F X + s C s s 2 sin s 2
fourierdlem86.q Q = i 0 M V i X
fourierdlem86.t T = A B ran Q A B
fourierdlem86.n N = T 1
fourierdlem86.s S = ι f | f Isom < , < 0 N T
fourierdlem86.d D = if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
fourierdlem86.e E = if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2
fourierdlem86.u U = ι i 0 ..^ M | S j S j + 1 Q i Q i + 1
Assertion fourierdlem86 φ j 0 ..^ N D O S j S j + 1 lim S j + 1 E O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn

Proof

Step Hyp Ref Expression
1 fourierdlem86.f φ F :
2 fourierdlem86.xre φ X
3 fourierdlem86.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
4 fourierdlem86.m φ M
5 fourierdlem86.v φ V P M
6 fourierdlem86.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
7 fourierdlem86.r φ i 0 ..^ M R F V i V i + 1 lim V i
8 fourierdlem86.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
9 fourierdlem86.a φ A
10 fourierdlem86.b φ B
11 fourierdlem86.altb φ A < B
12 fourierdlem86.ab φ A B π π
13 fourierdlem86.n0 φ ¬ 0 A B
14 fourierdlem86.c φ C
15 fourierdlem86.o O = s A B F X + s C s s 2 sin s 2
16 fourierdlem86.q Q = i 0 M V i X
17 fourierdlem86.t T = A B ran Q A B
18 fourierdlem86.n N = T 1
19 fourierdlem86.s S = ι f | f Isom < , < 0 N T
20 fourierdlem86.d D = if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
21 fourierdlem86.e E = if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2
22 fourierdlem86.u U = ι i 0 ..^ M | S j S j + 1 Q i Q i + 1
23 2 adantr φ j 0 ..^ N X
24 4 adantr φ j 0 ..^ N M
25 5 adantr φ j 0 ..^ N V P M
26 9 adantr φ j 0 ..^ N A
27 10 adantr φ j 0 ..^ N B
28 11 adantr φ j 0 ..^ N A < B
29 12 adantr φ j 0 ..^ N A B π π
30 simpr φ j 0 ..^ N j 0 ..^ N
31 biid φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 y 0 ..^ M S j S j + 1 Q y Q y + 1 φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 y 0 ..^ M S j S j + 1 Q y Q y + 1
32 23 3 24 25 26 27 28 29 16 17 18 19 30 22 31 fourierdlem50 φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1
33 32 simpld φ j 0 ..^ N U 0 ..^ M
34 id φ j 0 ..^ N φ j 0 ..^ N
35 32 simprd φ j 0 ..^ N S j S j + 1 Q U Q U + 1
36 34 33 35 jca31 φ j 0 ..^ N φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1
37 nfv i φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1
38 nfv i S j + 1 = Q U + 1
39 nfcsb1v _ i U / i L
40 nfcv _ i F X + S j + 1
41 38 39 40 nfif _ i if S j + 1 = Q U + 1 U / i L F X + S j + 1
42 nfcv _ i
43 nfcv _ i C
44 41 42 43 nfov _ i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C
45 nfcv _ i ÷
46 nfcv _ i S j + 1
47 44 45 46 nfov _ i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1
48 nfcv _ i ×
49 nfcv _ i S j + 1 2 sin S j + 1 2
50 47 48 49 nfov _ i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
51 50 nfel1 i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1
52 nfv i S j = Q U
53 nfcsb1v _ i U / i R
54 nfcv _ i F X + S j
55 52 53 54 nfif _ i if S j = Q U U / i R F X + S j
56 55 42 43 nfov _ i if S j = Q U U / i R F X + S j C
57 nfcv _ i S j
58 56 45 57 nfov _ i if S j = Q U U / i R F X + S j C S j
59 nfcv _ i S j 2 sin S j 2
60 58 48 59 nfov _ i if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2
61 60 nfel1 i if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
62 51 61 nfan i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
63 nfv i O S j S j + 1 : S j S j + 1 cn
64 62 63 nfan i if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
65 37 64 nfim i φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1 if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
66 eleq1 i = U i 0 ..^ M U 0 ..^ M
67 66 anbi2d i = U φ j 0 ..^ N i 0 ..^ M φ j 0 ..^ N U 0 ..^ M
68 fveq2 i = U Q i = Q U
69 oveq1 i = U i + 1 = U + 1
70 69 fveq2d i = U Q i + 1 = Q U + 1
71 68 70 oveq12d i = U Q i Q i + 1 = Q U Q U + 1
72 71 sseq2d i = U S j S j + 1 Q i Q i + 1 S j S j + 1 Q U Q U + 1
73 67 72 anbi12d i = U φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1
74 70 eqeq2d i = U S j + 1 = Q i + 1 S j + 1 = Q U + 1
75 csbeq1a i = U L = U / i L
76 74 75 ifbieq1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 = if S j + 1 = Q U + 1 U / i L F X + S j + 1
77 76 oveq1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C = if S j + 1 = Q U + 1 U / i L F X + S j + 1 C
78 77 oveq1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 = if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1
79 78 oveq1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 = if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
80 79 eleq1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1
81 68 eqeq2d i = U S j = Q i S j = Q U
82 csbeq1a i = U R = U / i R
83 81 82 ifbieq1d i = U if S j = Q i R F X + S j = if S j = Q U U / i R F X + S j
84 83 oveq1d i = U if S j = Q i R F X + S j C = if S j = Q U U / i R F X + S j C
85 84 oveq1d i = U if S j = Q i R F X + S j C S j = if S j = Q U U / i R F X + S j C S j
86 85 oveq1d i = U if S j = Q i R F X + S j C S j S j 2 sin S j 2 = if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2
87 86 eleq1d i = U if S j = Q i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
88 80 87 anbi12d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
89 88 anbi1d i = U if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
90 73 89 imbi12d i = U φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1 if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
91 eqid if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 = if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
92 eqid if S j = Q i R F X + S j C S j S j 2 sin S j 2 = if S j = Q i R F X + S j C S j S j 2 sin S j 2
93 biid φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1
94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 91 92 93 fourierdlem76 φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
95 65 90 94 vtoclg1f U 0 ..^ M φ j 0 ..^ N U 0 ..^ M S j S j + 1 Q U Q U + 1 if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
96 33 36 95 sylc φ j 0 ..^ N if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn
97 96 simpld φ j 0 ..^ N if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1 if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
98 97 simpld φ j 0 ..^ N if S j + 1 = Q U + 1 U / i L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 O S j S j + 1 lim S j + 1
99 20 98 eqeltrid φ j 0 ..^ N D O S j S j + 1 lim S j + 1
100 97 simprd φ j 0 ..^ N if S j = Q U U / i R F X + S j C S j S j 2 sin S j 2 O S j S j + 1 lim S j
101 21 100 eqeltrid φ j 0 ..^ N E O S j S j + 1 lim S j
102 96 simprd φ j 0 ..^ N O S j S j + 1 : S j S j + 1 cn
103 99 101 102 jca31 φ j 0 ..^ N D O S j S j + 1 lim S j + 1 E O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn