Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem87.f |
|
2 |
|
fourierdlem87.x |
|
3 |
|
fourierdlem87.y |
|
4 |
|
fourierdlem87.w |
|
5 |
|
fourierdlem87.h |
|
6 |
|
fourierdlem87.k |
|
7 |
|
fourierdlem87.u |
|
8 |
|
fourierdlem87.s |
|
9 |
|
fourierdlem87.g |
|
10 |
|
fourierdlem87.10 |
|
11 |
|
fourierdlem87.gibl |
|
12 |
|
fourierdlem87.d |
|
13 |
|
fourierdlem87.ch |
|
14 |
1 2 3 4 5 6 7 10
|
fourierdlem77 |
|
15 |
|
nfv |
|
16 |
|
nfra1 |
|
17 |
15 16
|
nfan |
|
18 |
|
nfv |
|
19 |
17 18
|
nfan |
|
20 |
|
simp-4l |
|
21 |
|
simp-4r |
|
22 |
|
simplr |
|
23 |
20 21 22
|
jca31 |
|
24 |
|
simpr |
|
25 |
|
simpllr |
|
26 |
|
rspa |
|
27 |
25 24 26
|
syl2anc |
|
28 |
|
simpr |
|
29 |
1 2 3 4 5 6 7
|
fourierdlem55 |
|
30 |
29
|
ffvelrnda |
|
31 |
30
|
adantlr |
|
32 |
|
nnre |
|
33 |
8
|
fourierdlem5 |
|
34 |
32 33
|
syl |
|
35 |
34
|
ad2antlr |
|
36 |
35 28
|
ffvelrnd |
|
37 |
31 36
|
remulcld |
|
38 |
9
|
fvmpt2 |
|
39 |
28 37 38
|
syl2anc |
|
40 |
|
simpr |
|
41 |
|
halfre |
|
42 |
41
|
a1i |
|
43 |
32 42
|
readdcld |
|
44 |
43
|
adantr |
|
45 |
|
pire |
|
46 |
45
|
renegcli |
|
47 |
|
iccssre |
|
48 |
46 45 47
|
mp2an |
|
49 |
48
|
sseli |
|
50 |
49
|
adantl |
|
51 |
44 50
|
remulcld |
|
52 |
51
|
resincld |
|
53 |
8
|
fvmpt2 |
|
54 |
40 52 53
|
syl2anc |
|
55 |
54
|
oveq2d |
|
56 |
55
|
adantll |
|
57 |
39 56
|
eqtrd |
|
58 |
57
|
fveq2d |
|
59 |
31
|
recnd |
|
60 |
52
|
adantll |
|
61 |
60
|
recnd |
|
62 |
59 61
|
absmuld |
|
63 |
58 62
|
eqtrd |
|
64 |
63
|
adantllr |
|
65 |
64
|
adantr |
|
66 |
59
|
abscld |
|
67 |
61
|
abscld |
|
68 |
66 67
|
remulcld |
|
69 |
68
|
adantllr |
|
70 |
69
|
adantr |
|
71 |
66
|
adantllr |
|
72 |
71
|
adantr |
|
73 |
|
rpre |
|
74 |
73
|
ad4antlr |
|
75 |
|
1red |
|
76 |
59
|
absge0d |
|
77 |
51
|
adantll |
|
78 |
|
abssinbd |
|
79 |
77 78
|
syl |
|
80 |
67 75 66 76 79
|
lemul2ad |
|
81 |
66
|
recnd |
|
82 |
81
|
mulid1d |
|
83 |
80 82
|
breqtrd |
|
84 |
83
|
adantllr |
|
85 |
84
|
adantr |
|
86 |
|
simpr |
|
87 |
70 72 74 85 86
|
letrd |
|
88 |
65 87
|
eqbrtrd |
|
89 |
23 24 27 88
|
syl21anc |
|
90 |
89
|
ex |
|
91 |
19 90
|
ralrimi |
|
92 |
91
|
ralrimiva |
|
93 |
92
|
ex |
|
94 |
93
|
reximdva |
|
95 |
14 94
|
mpd |
|
96 |
95
|
adantr |
|
97 |
|
id |
|
98 |
|
3rp |
|
99 |
98
|
a1i |
|
100 |
97 99
|
rpdivcld |
|
101 |
100
|
adantr |
|
102 |
|
simpr |
|
103 |
101 102
|
rpdivcld |
|
104 |
12 103
|
eqeltrid |
|
105 |
104
|
adantll |
|
106 |
105
|
3adant3 |
|
107 |
|
nfv |
|
108 |
|
nfv |
|
109 |
|
nfra1 |
|
110 |
107 108 109
|
nf3an |
|
111 |
|
nfv |
|
112 |
110 111
|
nfan |
|
113 |
|
nfv |
|
114 |
112 113
|
nfan |
|
115 |
|
simpl1l |
|
116 |
115
|
ad2antrr |
|
117 |
13 116
|
sylbi |
|
118 |
117 1
|
syl |
|
119 |
117 2
|
syl |
|
120 |
117 3
|
syl |
|
121 |
117 4
|
syl |
|
122 |
32
|
adantl |
|
123 |
13 122
|
sylbi |
|
124 |
118 119 120 121 5 6 7 123 8 9
|
fourierdlem67 |
|
125 |
124
|
adantr |
|
126 |
|
simplrl |
|
127 |
13 126
|
sylbi |
|
128 |
127
|
sselda |
|
129 |
125 128
|
ffvelrnd |
|
130 |
|
simpllr |
|
131 |
13 130
|
sylbi |
|
132 |
124
|
ffvelrnda |
|
133 |
124
|
feqmptd |
|
134 |
13
|
simprbi |
|
135 |
117 134 11
|
syl2anc |
|
136 |
133 135
|
eqeltrrd |
|
137 |
127 131 132 136
|
iblss |
|
138 |
129 137
|
itgcl |
|
139 |
138
|
abscld |
|
140 |
129
|
recnd |
|
141 |
140
|
abscld |
|
142 |
129 137
|
iblabs |
|
143 |
141 142
|
itgrecl |
|
144 |
|
simpl1r |
|
145 |
144
|
ad2antrr |
|
146 |
13 145
|
sylbi |
|
147 |
146
|
rpred |
|
148 |
147
|
rehalfcld |
|
149 |
129 137
|
itgabs |
|
150 |
|
simpl2 |
|
151 |
150
|
ad2antrr |
|
152 |
13 151
|
sylbi |
|
153 |
152
|
rpred |
|
154 |
153
|
adantr |
|
155 |
|
iccssxr |
|
156 |
|
volf |
|
157 |
156
|
a1i |
|
158 |
157 131
|
ffvelrnd |
|
159 |
155 158
|
sselid |
|
160 |
|
iccvolcl |
|
161 |
46 45 160
|
mp2an |
|
162 |
161
|
a1i |
|
163 |
|
mnfxr |
|
164 |
163
|
a1i |
|
165 |
|
0xr |
|
166 |
165
|
a1i |
|
167 |
|
mnflt0 |
|
168 |
167
|
a1i |
|
169 |
|
volge0 |
|
170 |
131 169
|
syl |
|
171 |
164 166 159 168 170
|
xrltletrd |
|
172 |
|
iccmbl |
|
173 |
46 45 172
|
mp2an |
|
174 |
173
|
a1i |
|
175 |
|
volss |
|
176 |
131 174 127 175
|
syl3anc |
|
177 |
|
xrre |
|
178 |
159 162 171 176 177
|
syl22anc |
|
179 |
152
|
rpcnd |
|
180 |
|
iblconstmpt |
|
181 |
131 178 179 180
|
syl3anc |
|
182 |
154 181
|
itgrecl |
|
183 |
|
simpl3 |
|
184 |
183
|
ad2antrr |
|
185 |
13 184
|
sylbi |
|
186 |
|
rspa |
|
187 |
185 134 186
|
syl2anc |
|
188 |
187
|
adantr |
|
189 |
|
rspa |
|
190 |
188 128 189
|
syl2anc |
|
191 |
142 181 141 154 190
|
itgle |
|
192 |
|
itgconst |
|
193 |
131 178 179 192
|
syl3anc |
|
194 |
153 178
|
remulcld |
|
195 |
|
3re |
|
196 |
195
|
a1i |
|
197 |
|
3ne0 |
|
198 |
197
|
a1i |
|
199 |
147 196 198
|
redivcld |
|
200 |
152
|
rpne0d |
|
201 |
199 153 200
|
redivcld |
|
202 |
12 201
|
eqeltrid |
|
203 |
153 202
|
remulcld |
|
204 |
152
|
rpge0d |
|
205 |
|
simplrr |
|
206 |
13 205
|
sylbi |
|
207 |
178 202 153 204 206
|
lemul2ad |
|
208 |
12
|
oveq2i |
|
209 |
199
|
recnd |
|
210 |
209 179 200
|
divcan2d |
|
211 |
208 210
|
eqtrid |
|
212 |
|
2rp |
|
213 |
212
|
a1i |
|
214 |
98
|
a1i |
|
215 |
|
2lt3 |
|
216 |
215
|
a1i |
|
217 |
213 214 146 216
|
ltdiv2dd |
|
218 |
211 217
|
eqbrtrd |
|
219 |
194 203 148 207 218
|
lelttrd |
|
220 |
193 219
|
eqbrtrd |
|
221 |
143 182 148 191 220
|
lelttrd |
|
222 |
139 143 148 149 221
|
lelttrd |
|
223 |
13 222
|
sylbir |
|
224 |
223
|
ex |
|
225 |
114 224
|
ralrimi |
|
226 |
225
|
ex |
|
227 |
226
|
ralrimiva |
|
228 |
|
breq2 |
|
229 |
228
|
anbi2d |
|
230 |
229
|
rspceaimv |
|
231 |
106 227 230
|
syl2anc |
|
232 |
231
|
rexlimdv3a |
|
233 |
96 232
|
mpd |
|
234 |
|
simplll |
|
235 |
|
simplr |
|
236 |
|
simpllr |
|
237 |
|
simpr |
|
238 |
236 237
|
sseldd |
|
239 |
234 235 238 57
|
syl21anc |
|
240 |
239
|
itgeq2dv |
|
241 |
240
|
fveq2d |
|
242 |
241
|
breq1d |
|
243 |
242
|
ralbidva |
|
244 |
|
oveq1 |
|
245 |
244
|
oveq1d |
|
246 |
245
|
fveq2d |
|
247 |
246
|
oveq2d |
|
248 |
247
|
adantr |
|
249 |
248
|
itgeq2dv |
|
250 |
249
|
fveq2d |
|
251 |
250
|
breq1d |
|
252 |
251
|
cbvralvw |
|
253 |
243 252
|
bitrdi |
|
254 |
253
|
adantrr |
|
255 |
254
|
pm5.74da |
|
256 |
255
|
rexralbidv |
|
257 |
256
|
adantr |
|
258 |
233 257
|
mpbid |
|