Metamath Proof Explorer


Theorem fourierdlem87

Description: The integral of G goes uniformly ( with respect to n ) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem87.f φ F :
fourierdlem87.x φ X
fourierdlem87.y φ Y
fourierdlem87.w φ W
fourierdlem87.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem87.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem87.u U = s π π H s K s
fourierdlem87.s S = s π π sin n + 1 2 s
fourierdlem87.g G = s π π U s S s
fourierdlem87.10 φ x s π π H s x
fourierdlem87.gibl φ n G 𝐿 1
fourierdlem87.d D = e 3 a
fourierdlem87.ch χ φ e + a + n s π π G s a u dom vol u π π vol u D n
Assertion fourierdlem87 φ e + d + u dom vol u π π vol u d k u U s sin k + 1 2 s ds < e 2

Proof

Step Hyp Ref Expression
1 fourierdlem87.f φ F :
2 fourierdlem87.x φ X
3 fourierdlem87.y φ Y
4 fourierdlem87.w φ W
5 fourierdlem87.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
6 fourierdlem87.k K = s π π if s = 0 1 s 2 sin s 2
7 fourierdlem87.u U = s π π H s K s
8 fourierdlem87.s S = s π π sin n + 1 2 s
9 fourierdlem87.g G = s π π U s S s
10 fourierdlem87.10 φ x s π π H s x
11 fourierdlem87.gibl φ n G 𝐿 1
12 fourierdlem87.d D = e 3 a
13 fourierdlem87.ch χ φ e + a + n s π π G s a u dom vol u π π vol u D n
14 1 2 3 4 5 6 7 10 fourierdlem77 φ a + s π π U s a
15 nfv s φ a +
16 nfra1 s s π π U s a
17 15 16 nfan s φ a + s π π U s a
18 nfv s n
19 17 18 nfan s φ a + s π π U s a n
20 simp-4l φ a + s π π U s a n s π π φ
21 simp-4r φ a + s π π U s a n s π π a +
22 simplr φ a + s π π U s a n s π π n
23 20 21 22 jca31 φ a + s π π U s a n s π π φ a + n
24 simpr φ a + s π π U s a n s π π s π π
25 simpllr φ a + s π π U s a n s π π s π π U s a
26 rspa s π π U s a s π π U s a
27 25 24 26 syl2anc φ a + s π π U s a n s π π U s a
28 simpr φ n s π π s π π
29 1 2 3 4 5 6 7 fourierdlem55 φ U : π π
30 29 ffvelrnda φ s π π U s
31 30 adantlr φ n s π π U s
32 nnre n n
33 8 fourierdlem5 n S : π π
34 32 33 syl n S : π π
35 34 ad2antlr φ n s π π S : π π
36 35 28 ffvelrnd φ n s π π S s
37 31 36 remulcld φ n s π π U s S s
38 9 fvmpt2 s π π U s S s G s = U s S s
39 28 37 38 syl2anc φ n s π π G s = U s S s
40 simpr n s π π s π π
41 halfre 1 2
42 41 a1i n 1 2
43 32 42 readdcld n n + 1 2
44 43 adantr n s π π n + 1 2
45 pire π
46 45 renegcli π
47 iccssre π π π π
48 46 45 47 mp2an π π
49 48 sseli s π π s
50 49 adantl n s π π s
51 44 50 remulcld n s π π n + 1 2 s
52 51 resincld n s π π sin n + 1 2 s
53 8 fvmpt2 s π π sin n + 1 2 s S s = sin n + 1 2 s
54 40 52 53 syl2anc n s π π S s = sin n + 1 2 s
55 54 oveq2d n s π π U s S s = U s sin n + 1 2 s
56 55 adantll φ n s π π U s S s = U s sin n + 1 2 s
57 39 56 eqtrd φ n s π π G s = U s sin n + 1 2 s
58 57 fveq2d φ n s π π G s = U s sin n + 1 2 s
59 31 recnd φ n s π π U s
60 52 adantll φ n s π π sin n + 1 2 s
61 60 recnd φ n s π π sin n + 1 2 s
62 59 61 absmuld φ n s π π U s sin n + 1 2 s = U s sin n + 1 2 s
63 58 62 eqtrd φ n s π π G s = U s sin n + 1 2 s
64 63 adantllr φ a + n s π π G s = U s sin n + 1 2 s
65 64 adantr φ a + n s π π U s a G s = U s sin n + 1 2 s
66 59 abscld φ n s π π U s
67 61 abscld φ n s π π sin n + 1 2 s
68 66 67 remulcld φ n s π π U s sin n + 1 2 s
69 68 adantllr φ a + n s π π U s sin n + 1 2 s
70 69 adantr φ a + n s π π U s a U s sin n + 1 2 s
71 66 adantllr φ a + n s π π U s
72 71 adantr φ a + n s π π U s a U s
73 rpre a + a
74 73 ad4antlr φ a + n s π π U s a a
75 1red φ n s π π 1
76 59 absge0d φ n s π π 0 U s
77 51 adantll φ n s π π n + 1 2 s
78 abssinbd n + 1 2 s sin n + 1 2 s 1
79 77 78 syl φ n s π π sin n + 1 2 s 1
80 67 75 66 76 79 lemul2ad φ n s π π U s sin n + 1 2 s U s 1
81 66 recnd φ n s π π U s
82 81 mulid1d φ n s π π U s 1 = U s
83 80 82 breqtrd φ n s π π U s sin n + 1 2 s U s
84 83 adantllr φ a + n s π π U s sin n + 1 2 s U s
85 84 adantr φ a + n s π π U s a U s sin n + 1 2 s U s
86 simpr φ a + n s π π U s a U s a
87 70 72 74 85 86 letrd φ a + n s π π U s a U s sin n + 1 2 s a
88 65 87 eqbrtrd φ a + n s π π U s a G s a
89 23 24 27 88 syl21anc φ a + s π π U s a n s π π G s a
90 89 ex φ a + s π π U s a n s π π G s a
91 19 90 ralrimi φ a + s π π U s a n s π π G s a
92 91 ralrimiva φ a + s π π U s a n s π π G s a
93 92 ex φ a + s π π U s a n s π π G s a
94 93 reximdva φ a + s π π U s a a + n s π π G s a
95 14 94 mpd φ a + n s π π G s a
96 95 adantr φ e + a + n s π π G s a
97 id e + e +
98 3rp 3 +
99 98 a1i e + 3 +
100 97 99 rpdivcld e + e 3 +
101 100 adantr e + a + e 3 +
102 simpr e + a + a +
103 101 102 rpdivcld e + a + e 3 a +
104 12 103 eqeltrid e + a + D +
105 104 adantll φ e + a + D +
106 105 3adant3 φ e + a + n s π π G s a D +
107 nfv n φ e +
108 nfv n a +
109 nfra1 n n s π π G s a
110 107 108 109 nf3an n φ e + a + n s π π G s a
111 nfv n u dom vol
112 110 111 nfan n φ e + a + n s π π G s a u dom vol
113 nfv n u π π vol u D
114 112 113 nfan n φ e + a + n s π π G s a u dom vol u π π vol u D
115 simpl1l φ e + a + n s π π G s a u dom vol φ
116 115 ad2antrr φ e + a + n s π π G s a u dom vol u π π vol u D n φ
117 13 116 sylbi χ φ
118 117 1 syl χ F :
119 117 2 syl χ X
120 117 3 syl χ Y
121 117 4 syl χ W
122 32 adantl φ e + a + n s π π G s a u dom vol u π π vol u D n n
123 13 122 sylbi χ n
124 118 119 120 121 5 6 7 123 8 9 fourierdlem67 χ G : π π
125 124 adantr χ s u G : π π
126 simplrl φ e + a + n s π π G s a u dom vol u π π vol u D n u π π
127 13 126 sylbi χ u π π
128 127 sselda χ s u s π π
129 125 128 ffvelrnd χ s u G s
130 simpllr φ e + a + n s π π G s a u dom vol u π π vol u D n u dom vol
131 13 130 sylbi χ u dom vol
132 124 ffvelrnda χ s π π G s
133 124 feqmptd χ G = s π π G s
134 13 simprbi χ n
135 117 134 11 syl2anc χ G 𝐿 1
136 133 135 eqeltrrd χ s π π G s 𝐿 1
137 127 131 132 136 iblss χ s u G s 𝐿 1
138 129 137 itgcl χ u G s ds
139 138 abscld χ u G s ds
140 129 recnd χ s u G s
141 140 abscld χ s u G s
142 129 137 iblabs χ s u G s 𝐿 1
143 141 142 itgrecl χ u G s ds
144 simpl1r φ e + a + n s π π G s a u dom vol e +
145 144 ad2antrr φ e + a + n s π π G s a u dom vol u π π vol u D n e +
146 13 145 sylbi χ e +
147 146 rpred χ e
148 147 rehalfcld χ e 2
149 129 137 itgabs χ u G s ds u G s ds
150 simpl2 φ e + a + n s π π G s a u dom vol a +
151 150 ad2antrr φ e + a + n s π π G s a u dom vol u π π vol u D n a +
152 13 151 sylbi χ a +
153 152 rpred χ a
154 153 adantr χ s u a
155 iccssxr 0 +∞ *
156 volf vol : dom vol 0 +∞
157 156 a1i χ vol : dom vol 0 +∞
158 157 131 ffvelrnd χ vol u 0 +∞
159 155 158 sselid χ vol u *
160 iccvolcl π π vol π π
161 46 45 160 mp2an vol π π
162 161 a1i χ vol π π
163 mnfxr −∞ *
164 163 a1i χ −∞ *
165 0xr 0 *
166 165 a1i χ 0 *
167 mnflt0 −∞ < 0
168 167 a1i χ −∞ < 0
169 volge0 u dom vol 0 vol u
170 131 169 syl χ 0 vol u
171 164 166 159 168 170 xrltletrd χ −∞ < vol u
172 iccmbl π π π π dom vol
173 46 45 172 mp2an π π dom vol
174 173 a1i χ π π dom vol
175 volss u dom vol π π dom vol u π π vol u vol π π
176 131 174 127 175 syl3anc χ vol u vol π π
177 xrre vol u * vol π π −∞ < vol u vol u vol π π vol u
178 159 162 171 176 177 syl22anc χ vol u
179 152 rpcnd χ a
180 iblconstmpt u dom vol vol u a s u a 𝐿 1
181 131 178 179 180 syl3anc χ s u a 𝐿 1
182 154 181 itgrecl χ u a ds
183 simpl3 φ e + a + n s π π G s a u dom vol n s π π G s a
184 183 ad2antrr φ e + a + n s π π G s a u dom vol u π π vol u D n n s π π G s a
185 13 184 sylbi χ n s π π G s a
186 rspa n s π π G s a n s π π G s a
187 185 134 186 syl2anc χ s π π G s a
188 187 adantr χ s u s π π G s a
189 rspa s π π G s a s π π G s a
190 188 128 189 syl2anc χ s u G s a
191 142 181 141 154 190 itgle χ u G s ds u a ds
192 itgconst u dom vol vol u a u a ds = a vol u
193 131 178 179 192 syl3anc χ u a ds = a vol u
194 153 178 remulcld χ a vol u
195 3re 3
196 195 a1i χ 3
197 3ne0 3 0
198 197 a1i χ 3 0
199 147 196 198 redivcld χ e 3
200 152 rpne0d χ a 0
201 199 153 200 redivcld χ e 3 a
202 12 201 eqeltrid χ D
203 153 202 remulcld χ a D
204 152 rpge0d χ 0 a
205 simplrr φ e + a + n s π π G s a u dom vol u π π vol u D n vol u D
206 13 205 sylbi χ vol u D
207 178 202 153 204 206 lemul2ad χ a vol u a D
208 12 oveq2i a D = a e 3 a
209 199 recnd χ e 3
210 209 179 200 divcan2d χ a e 3 a = e 3
211 208 210 eqtrid χ a D = e 3
212 2rp 2 +
213 212 a1i χ 2 +
214 98 a1i χ 3 +
215 2lt3 2 < 3
216 215 a1i χ 2 < 3
217 213 214 146 216 ltdiv2dd χ e 3 < e 2
218 211 217 eqbrtrd χ a D < e 2
219 194 203 148 207 218 lelttrd χ a vol u < e 2
220 193 219 eqbrtrd χ u a ds < e 2
221 143 182 148 191 220 lelttrd χ u G s ds < e 2
222 139 143 148 149 221 lelttrd χ u G s ds < e 2
223 13 222 sylbir φ e + a + n s π π G s a u dom vol u π π vol u D n u G s ds < e 2
224 223 ex φ e + a + n s π π G s a u dom vol u π π vol u D n u G s ds < e 2
225 114 224 ralrimi φ e + a + n s π π G s a u dom vol u π π vol u D n u G s ds < e 2
226 225 ex φ e + a + n s π π G s a u dom vol u π π vol u D n u G s ds < e 2
227 226 ralrimiva φ e + a + n s π π G s a u dom vol u π π vol u D n u G s ds < e 2
228 breq2 d = D vol u d vol u D
229 228 anbi2d d = D u π π vol u d u π π vol u D
230 229 rspceaimv D + u dom vol u π π vol u D n u G s ds < e 2 d + u dom vol u π π vol u d n u G s ds < e 2
231 106 227 230 syl2anc φ e + a + n s π π G s a d + u dom vol u π π vol u d n u G s ds < e 2
232 231 rexlimdv3a φ e + a + n s π π G s a d + u dom vol u π π vol u d n u G s ds < e 2
233 96 232 mpd φ e + d + u dom vol u π π vol u d n u G s ds < e 2
234 simplll φ u π π n s u φ
235 simplr φ u π π n s u n
236 simpllr φ u π π n s u u π π
237 simpr φ u π π n s u s u
238 236 237 sseldd φ u π π n s u s π π
239 234 235 238 57 syl21anc φ u π π n s u G s = U s sin n + 1 2 s
240 239 itgeq2dv φ u π π n u G s ds = u U s sin n + 1 2 s ds
241 240 fveq2d φ u π π n u G s ds = u U s sin n + 1 2 s ds
242 241 breq1d φ u π π n u G s ds < e 2 u U s sin n + 1 2 s ds < e 2
243 242 ralbidva φ u π π n u G s ds < e 2 n u U s sin n + 1 2 s ds < e 2
244 oveq1 n = k n + 1 2 = k + 1 2
245 244 oveq1d n = k n + 1 2 s = k + 1 2 s
246 245 fveq2d n = k sin n + 1 2 s = sin k + 1 2 s
247 246 oveq2d n = k U s sin n + 1 2 s = U s sin k + 1 2 s
248 247 adantr n = k s u U s sin n + 1 2 s = U s sin k + 1 2 s
249 248 itgeq2dv n = k u U s sin n + 1 2 s ds = u U s sin k + 1 2 s ds
250 249 fveq2d n = k u U s sin n + 1 2 s ds = u U s sin k + 1 2 s ds
251 250 breq1d n = k u U s sin n + 1 2 s ds < e 2 u U s sin k + 1 2 s ds < e 2
252 251 cbvralvw n u U s sin n + 1 2 s ds < e 2 k u U s sin k + 1 2 s ds < e 2
253 243 252 bitrdi φ u π π n u G s ds < e 2 k u U s sin k + 1 2 s ds < e 2
254 253 adantrr φ u π π vol u d n u G s ds < e 2 k u U s sin k + 1 2 s ds < e 2
255 254 pm5.74da φ u π π vol u d n u G s ds < e 2 u π π vol u d k u U s sin k + 1 2 s ds < e 2
256 255 rexralbidv φ d + u dom vol u π π vol u d n u G s ds < e 2 d + u dom vol u π π vol u d k u U s sin k + 1 2 s ds < e 2
257 256 adantr φ e + d + u dom vol u π π vol u d n u G s ds < e 2 d + u dom vol u π π vol u d k u U s sin k + 1 2 s ds < e 2
258 233 257 mpbid φ e + d + u dom vol u π π vol u d k u U s sin k + 1 2 s ds < e 2