Metamath Proof Explorer


Theorem fourierdlem88

Description: Given a piecewise continuous function F , a continuous function K and a continuous function S , the function G is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem88.1 P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem88.f φ F :
fourierdlem88.x φ X ran V
fourierdlem88.y φ Y F X +∞ lim X
fourierdlem88.w φ W F −∞ X lim X
fourierdlem88.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem88.k K = s π π if s = 0 1 s 2 sin s 2
fourierdlem88.u U = s π π H s K s
fourierdlem88.n φ N
fourierdlem88.s S = s π π sin N + 1 2 s
fourierdlem88.g G = s π π U s S s
fourierdlem88.m φ M
fourierdlem88.v φ V P M
fourierdlem88.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
fourierdlem88.r φ i 0 ..^ M R F V i V i + 1 lim V i
fourierdlem88.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
fourierdlem88.q Q = i 0 M V i X
fourierdlem88.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
fourierdlem88.i I = D F
fourierdlem88.ifn φ i 0 ..^ M I V i V i + 1 : V i V i + 1
fourierdlem88.c φ C I −∞ X lim X
fourierdlem88.d φ D I X +∞ lim X
Assertion fourierdlem88 φ G 𝐿 1

Proof

Step Hyp Ref Expression
1 fourierdlem88.1 P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
2 fourierdlem88.f φ F :
3 fourierdlem88.x φ X ran V
4 fourierdlem88.y φ Y F X +∞ lim X
5 fourierdlem88.w φ W F −∞ X lim X
6 fourierdlem88.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
7 fourierdlem88.k K = s π π if s = 0 1 s 2 sin s 2
8 fourierdlem88.u U = s π π H s K s
9 fourierdlem88.n φ N
10 fourierdlem88.s S = s π π sin N + 1 2 s
11 fourierdlem88.g G = s π π U s S s
12 fourierdlem88.m φ M
13 fourierdlem88.v φ V P M
14 fourierdlem88.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
15 fourierdlem88.r φ i 0 ..^ M R F V i V i + 1 lim V i
16 fourierdlem88.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
17 fourierdlem88.q Q = i 0 M V i X
18 fourierdlem88.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
19 fourierdlem88.i I = D F
20 fourierdlem88.ifn φ i 0 ..^ M I V i V i + 1 : V i V i + 1
21 fourierdlem88.c φ C I −∞ X lim X
22 fourierdlem88.d φ D I X +∞ lim X
23 pire π
24 23 a1i φ π
25 24 renegcld φ π
26 1 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
27 12 26 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
28 13 27 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
29 28 simpld φ V 0 M
30 elmapi V 0 M V : 0 M
31 frn V : 0 M ran V
32 29 30 31 3syl φ ran V
33 32 3 sseldd φ X
34 25 24 33 1 18 12 13 17 fourierdlem14 φ Q O M
35 ioossre X +∞
36 35 a1i φ X +∞
37 2 36 fssresd φ F X +∞ : X +∞
38 ax-resscn
39 36 38 sstrdi φ X +∞
40 eqid TopOpen fld = TopOpen fld
41 pnfxr +∞ *
42 41 a1i φ +∞ *
43 33 ltpnfd φ X < +∞
44 40 42 33 43 lptioo1cn φ X limPt TopOpen fld X +∞
45 37 39 44 4 limcrecl φ Y
46 ioossre −∞ X
47 46 a1i φ −∞ X
48 2 47 fssresd φ F −∞ X : −∞ X
49 47 38 sstrdi φ −∞ X
50 mnfxr −∞ *
51 50 a1i φ −∞ *
52 33 mnfltd φ −∞ < X
53 40 51 33 52 lptioo2cn φ X limPt TopOpen fld −∞ X
54 48 49 53 5 limcrecl φ W
55 2 33 45 54 6 7 8 fourierdlem55 φ U : π π
56 55 ffvelrnda φ s π π U s
57 10 fourierdlem5 N S : π π
58 9 57 syl φ S : π π
59 58 ffvelrnda φ s π π S s
60 56 59 remulcld φ s π π U s S s
61 60 recnd φ s π π U s S s
62 61 11 fmptd φ G : π π
63 ssid
64 cncfss Q i Q i + 1 cn Q i Q i + 1 cn
65 38 63 64 mp2an Q i Q i + 1 cn Q i Q i + 1 cn
66 2 adantr φ i 0 ..^ M F :
67 18 12 34 fourierdlem15 φ Q : 0 M π π
68 67 adantr φ i 0 ..^ M Q : 0 M π π
69 elfzofz i 0 ..^ M i 0 M
70 69 adantl φ i 0 ..^ M i 0 M
71 68 70 ffvelrnd φ i 0 ..^ M Q i π π
72 fzofzp1 i 0 ..^ M i + 1 0 M
73 72 adantl φ i 0 ..^ M i + 1 0 M
74 68 73 ffvelrnd φ i 0 ..^ M Q i + 1 π π
75 33 adantr φ i 0 ..^ M X
76 1 12 13 3 fourierdlem12 φ i 0 ..^ M ¬ X V i V i + 1
77 75 recnd φ i 0 ..^ M X
78 77 addid2d φ i 0 ..^ M 0 + X = X
79 23 a1i φ i 0 ..^ M π
80 79 renegcld φ i 0 ..^ M π
81 80 75 readdcld φ i 0 ..^ M - π + X
82 79 75 readdcld φ i 0 ..^ M π + X
83 81 82 iccssred φ i 0 ..^ M - π + X π + X
84 1 12 13 fourierdlem15 φ V : 0 M - π + X π + X
85 84 adantr φ i 0 ..^ M V : 0 M - π + X π + X
86 85 70 ffvelrnd φ i 0 ..^ M V i - π + X π + X
87 83 86 sseldd φ i 0 ..^ M V i
88 87 75 resubcld φ i 0 ..^ M V i X
89 17 fvmpt2 i 0 M V i X Q i = V i X
90 70 88 89 syl2anc φ i 0 ..^ M Q i = V i X
91 90 oveq1d φ i 0 ..^ M Q i + X = V i - X + X
92 87 recnd φ i 0 ..^ M V i
93 92 77 npcand φ i 0 ..^ M V i - X + X = V i
94 91 93 eqtrd φ i 0 ..^ M Q i + X = V i
95 fveq2 i = j V i = V j
96 95 oveq1d i = j V i X = V j X
97 96 cbvmptv i 0 M V i X = j 0 M V j X
98 17 97 eqtri Q = j 0 M V j X
99 98 a1i φ i 0 ..^ M Q = j 0 M V j X
100 simpr φ i 0 ..^ M j = i + 1 j = i + 1
101 100 fveq2d φ i 0 ..^ M j = i + 1 V j = V i + 1
102 101 oveq1d φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
103 85 73 ffvelrnd φ i 0 ..^ M V i + 1 - π + X π + X
104 83 103 sseldd φ i 0 ..^ M V i + 1
105 104 75 resubcld φ i 0 ..^ M V i + 1 X
106 99 102 73 105 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
107 106 oveq1d φ i 0 ..^ M Q i + 1 + X = V i + 1 - X + X
108 104 recnd φ i 0 ..^ M V i + 1
109 108 77 npcand φ i 0 ..^ M V i + 1 - X + X = V i + 1
110 107 109 eqtrd φ i 0 ..^ M Q i + 1 + X = V i + 1
111 94 110 oveq12d φ i 0 ..^ M Q i + X Q i + 1 + X = V i V i + 1
112 78 111 eleq12d φ i 0 ..^ M 0 + X Q i + X Q i + 1 + X X V i V i + 1
113 76 112 mtbird φ i 0 ..^ M ¬ 0 + X Q i + X Q i + 1 + X
114 0red φ i 0 ..^ M 0
115 90 88 eqeltrd φ i 0 ..^ M Q i
116 106 105 eqeltrd φ i 0 ..^ M Q i + 1
117 114 115 116 75 eliooshift φ i 0 ..^ M 0 Q i Q i + 1 0 + X Q i + X Q i + 1 + X
118 113 117 mtbird φ i 0 ..^ M ¬ 0 Q i Q i + 1
119 111 reseq2d φ i 0 ..^ M F Q i + X Q i + 1 + X = F V i V i + 1
120 111 oveq1d φ i 0 ..^ M Q i + X Q i + 1 + X cn = V i V i + 1 cn
121 14 119 120 3eltr4d φ i 0 ..^ M F Q i + X Q i + 1 + X : Q i + X Q i + 1 + X cn
122 45 adantr φ i 0 ..^ M Y
123 54 adantr φ i 0 ..^ M W
124 9 adantr φ i 0 ..^ M N
125 66 71 74 75 118 121 122 123 6 7 8 124 10 11 fourierdlem78 φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
126 65 125 sselid φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
127 eqid s Q i Q i + 1 U s = s Q i Q i + 1 U s
128 eqid s Q i Q i + 1 S s = s Q i Q i + 1 S s
129 eqid s Q i Q i + 1 U s S s = s Q i Q i + 1 U s S s
130 23 renegcli π
131 130 rexri π *
132 131 a1i φ i 0 ..^ M s Q i Q i + 1 π *
133 23 rexri π *
134 133 a1i φ i 0 ..^ M s Q i Q i + 1 π *
135 68 adantr φ i 0 ..^ M s Q i Q i + 1 Q : 0 M π π
136 simplr φ i 0 ..^ M s Q i Q i + 1 i 0 ..^ M
137 132 134 135 136 fourierdlem8 φ i 0 ..^ M s Q i Q i + 1 Q i Q i + 1 π π
138 ioossicc Q i Q i + 1 Q i Q i + 1
139 138 sseli s Q i Q i + 1 s Q i Q i + 1
140 139 adantl φ i 0 ..^ M s Q i Q i + 1 s Q i Q i + 1
141 137 140 sseldd φ i 0 ..^ M s Q i Q i + 1 s π π
142 2 33 45 54 6 fourierdlem9 φ H : π π
143 142 ad2antrr φ i 0 ..^ M s Q i Q i + 1 H : π π
144 143 141 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 H s
145 7 fourierdlem43 K : π π
146 145 a1i φ i 0 ..^ M s Q i Q i + 1 K : π π
147 146 141 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 K s
148 144 147 remulcld φ i 0 ..^ M s Q i Q i + 1 H s K s
149 8 fvmpt2 s π π H s K s U s = H s K s
150 141 148 149 syl2anc φ i 0 ..^ M s Q i Q i + 1 U s = H s K s
151 150 148 eqeltrd φ i 0 ..^ M s Q i Q i + 1 U s
152 151 recnd φ i 0 ..^ M s Q i Q i + 1 U s
153 9 10 fourierdlem18 φ S : π π cn
154 cncff S : π π cn S : π π
155 153 154 syl φ S : π π
156 155 adantr φ i 0 ..^ M S : π π
157 156 adantr φ i 0 ..^ M s Q i Q i + 1 S : π π
158 157 141 ffvelrnd φ i 0 ..^ M s Q i Q i + 1 S s
159 158 recnd φ i 0 ..^ M s Q i Q i + 1 S s
160 eqid s Q i Q i + 1 H s = s Q i Q i + 1 H s
161 eqid s Q i Q i + 1 K s = s Q i Q i + 1 K s
162 eqid s Q i Q i + 1 H s K s = s Q i Q i + 1 H s K s
163 144 recnd φ i 0 ..^ M s Q i Q i + 1 H s
164 147 recnd φ i 0 ..^ M s Q i Q i + 1 K s
165 38 a1i φ i 0 ..^ M
166 20 165 fssd φ i 0 ..^ M I V i V i + 1 : V i V i + 1
167 eqid if V i = X D R if V i < X W Y Q i = if V i = X D R if V i < X W Y Q i
168 33 1 2 3 4 54 6 12 13 15 17 18 19 166 22 167 fourierdlem75 φ i 0 ..^ M if V i = X D R if V i < X W Y Q i H Q i Q i + 1 lim Q i
169 142 adantr φ i 0 ..^ M H : π π
170 131 a1i φ i 0 ..^ M π *
171 133 a1i φ i 0 ..^ M π *
172 simpr φ i 0 ..^ M i 0 ..^ M
173 170 171 68 172 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 π π
174 138 173 sstrid φ i 0 ..^ M Q i Q i + 1 π π
175 169 174 feqresmpt φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 H s
176 175 oveq1d φ i 0 ..^ M H Q i Q i + 1 lim Q i = s Q i Q i + 1 H s lim Q i
177 168 176 eleqtrd φ i 0 ..^ M if V i = X D R if V i < X W Y Q i s Q i Q i + 1 H s lim Q i
178 limcresi K lim Q i K Q i Q i + 1 lim Q i
179 7 fourierdlem62 K : π π cn
180 179 a1i φ i 0 ..^ M K : π π cn
181 180 71 cnlimci φ i 0 ..^ M K Q i K lim Q i
182 178 181 sselid φ i 0 ..^ M K Q i K Q i Q i + 1 lim Q i
183 145 a1i φ i 0 ..^ M K : π π
184 183 174 feqresmpt φ i 0 ..^ M K Q i Q i + 1 = s Q i Q i + 1 K s
185 184 oveq1d φ i 0 ..^ M K Q i Q i + 1 lim Q i = s Q i Q i + 1 K s lim Q i
186 182 185 eleqtrd φ i 0 ..^ M K Q i s Q i Q i + 1 K s lim Q i
187 160 161 162 163 164 177 186 mullimc φ i 0 ..^ M if V i = X D R if V i < X W Y Q i K Q i s Q i Q i + 1 H s K s lim Q i
188 150 eqcomd φ i 0 ..^ M s Q i Q i + 1 H s K s = U s
189 188 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 H s K s = s Q i Q i + 1 U s
190 189 oveq1d φ i 0 ..^ M s Q i Q i + 1 H s K s lim Q i = s Q i Q i + 1 U s lim Q i
191 187 190 eleqtrd φ i 0 ..^ M if V i = X D R if V i < X W Y Q i K Q i s Q i Q i + 1 U s lim Q i
192 limcresi S lim Q i S Q i Q i + 1 lim Q i
193 153 adantr φ i 0 ..^ M S : π π cn
194 193 71 cnlimci φ i 0 ..^ M S Q i S lim Q i
195 192 194 sselid φ i 0 ..^ M S Q i S Q i Q i + 1 lim Q i
196 156 174 feqresmpt φ i 0 ..^ M S Q i Q i + 1 = s Q i Q i + 1 S s
197 196 oveq1d φ i 0 ..^ M S Q i Q i + 1 lim Q i = s Q i Q i + 1 S s lim Q i
198 195 197 eleqtrd φ i 0 ..^ M S Q i s Q i Q i + 1 S s lim Q i
199 127 128 129 152 159 191 198 mullimc φ i 0 ..^ M if V i = X D R if V i < X W Y Q i K Q i S Q i s Q i Q i + 1 U s S s lim Q i
200 60 11 fmptd φ G : π π
201 200 adantr φ i 0 ..^ M G : π π
202 201 174 feqresmpt φ i 0 ..^ M G Q i Q i + 1 = s Q i Q i + 1 G s
203 151 158 remulcld φ i 0 ..^ M s Q i Q i + 1 U s S s
204 11 fvmpt2 s π π U s S s G s = U s S s
205 141 203 204 syl2anc φ i 0 ..^ M s Q i Q i + 1 G s = U s S s
206 205 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 G s = s Q i Q i + 1 U s S s
207 202 206 eqtr2d φ i 0 ..^ M s Q i Q i + 1 U s S s = G Q i Q i + 1
208 207 oveq1d φ i 0 ..^ M s Q i Q i + 1 U s S s lim Q i = G Q i Q i + 1 lim Q i
209 199 208 eleqtrd φ i 0 ..^ M if V i = X D R if V i < X W Y Q i K Q i S Q i G Q i Q i + 1 lim Q i
210 eqid if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 = if V i + 1 = X C L if V i + 1 < X W Y Q i + 1
211 33 1 2 3 45 5 6 12 13 16 17 18 19 20 21 210 fourierdlem74 φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 H Q i Q i + 1 lim Q i + 1
212 175 oveq1d φ i 0 ..^ M H Q i Q i + 1 lim Q i + 1 = s Q i Q i + 1 H s lim Q i + 1
213 211 212 eleqtrd φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 s Q i Q i + 1 H s lim Q i + 1
214 limcresi K lim Q i + 1 K Q i Q i + 1 lim Q i + 1
215 180 74 cnlimci φ i 0 ..^ M K Q i + 1 K lim Q i + 1
216 214 215 sselid φ i 0 ..^ M K Q i + 1 K Q i Q i + 1 lim Q i + 1
217 184 oveq1d φ i 0 ..^ M K Q i Q i + 1 lim Q i + 1 = s Q i Q i + 1 K s lim Q i + 1
218 216 217 eleqtrd φ i 0 ..^ M K Q i + 1 s Q i Q i + 1 K s lim Q i + 1
219 160 161 162 163 164 213 218 mullimc φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 K Q i + 1 s Q i Q i + 1 H s K s lim Q i + 1
220 189 oveq1d φ i 0 ..^ M s Q i Q i + 1 H s K s lim Q i + 1 = s Q i Q i + 1 U s lim Q i + 1
221 219 220 eleqtrd φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 K Q i + 1 s Q i Q i + 1 U s lim Q i + 1
222 limcresi S lim Q i + 1 S Q i Q i + 1 lim Q i + 1
223 193 74 cnlimci φ i 0 ..^ M S Q i + 1 S lim Q i + 1
224 222 223 sselid φ i 0 ..^ M S Q i + 1 S Q i Q i + 1 lim Q i + 1
225 196 oveq1d φ i 0 ..^ M S Q i Q i + 1 lim Q i + 1 = s Q i Q i + 1 S s lim Q i + 1
226 224 225 eleqtrd φ i 0 ..^ M S Q i + 1 s Q i Q i + 1 S s lim Q i + 1
227 127 128 129 152 159 221 226 mullimc φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 K Q i + 1 S Q i + 1 s Q i Q i + 1 U s S s lim Q i + 1
228 207 oveq1d φ i 0 ..^ M s Q i Q i + 1 U s S s lim Q i + 1 = G Q i Q i + 1 lim Q i + 1
229 227 228 eleqtrd φ i 0 ..^ M if V i + 1 = X C L if V i + 1 < X W Y Q i + 1 K Q i + 1 S Q i + 1 G Q i Q i + 1 lim Q i + 1
230 18 12 34 62 126 209 229 fourierdlem69 φ G 𝐿 1