Metamath Proof Explorer


Theorem fourierdlem89

Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the lower bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem89.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem89.t T = B A
fourierdlem89.m φ M
fourierdlem89.q φ Q P M
fourierdlem89.f φ F :
fourierdlem89.per φ x F x + T = F x
fourierdlem89.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem89.limc φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem89.c φ C
fourierdlem89.d φ D C +∞
fourierdlem89.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
fourierdlem89.12 H = C D y C D | k y + k T ran Q
fourierdlem89.n N = H 1
fourierdlem89.s S = ι f | f Isom < , < 0 N H
fourierdlem89.e E = x x + B x T T
fourierdlem89.z Z = y A B if y = B A y
fourierdlem89.j φ J 0 ..^ N
fourierdlem89.u U = S J + 1 E S J + 1
fourierdlem89.20 I = x sup i 0 ..^ M | Q i Z E x <
fourierdlem89.21 V = i 0 ..^ M R
Assertion fourierdlem89 φ if Z E S J = Q I S J V I S J F Z E S J F S J S J + 1 lim S J

Proof

Step Hyp Ref Expression
1 fourierdlem89.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem89.t T = B A
3 fourierdlem89.m φ M
4 fourierdlem89.q φ Q P M
5 fourierdlem89.f φ F :
6 fourierdlem89.per φ x F x + T = F x
7 fourierdlem89.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
8 fourierdlem89.limc φ i 0 ..^ M R F Q i Q i + 1 lim Q i
9 fourierdlem89.c φ C
10 fourierdlem89.d φ D C +∞
11 fourierdlem89.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
12 fourierdlem89.12 H = C D y C D | k y + k T ran Q
13 fourierdlem89.n N = H 1
14 fourierdlem89.s S = ι f | f Isom < , < 0 N H
15 fourierdlem89.e E = x x + B x T T
16 fourierdlem89.z Z = y A B if y = B A y
17 fourierdlem89.j φ J 0 ..^ N
18 fourierdlem89.u U = S J + 1 E S J + 1
19 fourierdlem89.20 I = x sup i 0 ..^ M | Q i Z E x <
20 fourierdlem89.21 V = i 0 ..^ M R
21 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
22 3 21 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
23 4 22 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
24 23 simpld φ Q 0 M
25 elmapi Q 0 M Q : 0 M
26 24 25 syl φ Q : 0 M
27 fzossfz 0 ..^ M 0 M
28 1 3 4 2 15 16 19 fourierdlem37 φ I : 0 ..^ M x sup i 0 ..^ M | Q i Z E x < i 0 ..^ M | Q i Z E x
29 28 simpld φ I : 0 ..^ M
30 elioore D C +∞ D
31 10 30 syl φ D
32 elioo4g D C +∞ C * +∞ * D C < D D < +∞
33 10 32 sylib φ C * +∞ * D C < D D < +∞
34 33 simprd φ C < D D < +∞
35 34 simpld φ C < D
36 oveq1 y = x y + k T = x + k T
37 36 eleq1d y = x y + k T ran Q x + k T ran Q
38 37 rexbidv y = x k y + k T ran Q k x + k T ran Q
39 38 cbvrabv y C D | k y + k T ran Q = x C D | k x + k T ran Q
40 39 uneq2i C D y C D | k y + k T ran Q = C D x C D | k x + k T ran Q
41 12 fveq2i H = C D y C D | k y + k T ran Q
42 41 oveq1i H 1 = C D y C D | k y + k T ran Q 1
43 13 42 eqtri N = C D y C D | k y + k T ran Q 1
44 isoeq5 H = C D y C D | k y + k T ran Q f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k T ran Q
45 12 44 ax-mp f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k T ran Q
46 45 iotabii ι f | f Isom < , < 0 N H = ι f | f Isom < , < 0 N C D y C D | k y + k T ran Q
47 14 46 eqtri S = ι f | f Isom < , < 0 N C D y C D | k y + k T ran Q
48 2 1 3 4 9 31 35 11 40 43 47 fourierdlem54 φ N S O N S Isom < , < 0 N C D y C D | k y + k T ran Q
49 48 simpld φ N S O N
50 49 simprd φ S O N
51 49 simpld φ N
52 11 fourierdlem2 N S O N S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
53 51 52 syl φ S O N S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
54 50 53 mpbid φ S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
55 54 simpld φ S 0 N
56 elmapi S 0 N S : 0 N
57 55 56 syl φ S : 0 N
58 elfzofz J 0 ..^ N J 0 N
59 17 58 syl φ J 0 N
60 57 59 ffvelrnd φ S J
61 29 60 ffvelrnd φ I S J 0 ..^ M
62 27 61 sselid φ I S J 0 M
63 26 62 ffvelrnd φ Q I S J
64 63 rexrd φ Q I S J *
65 64 adantr φ ¬ Z E S J = Q I S J Q I S J *
66 fzofzp1 I S J 0 ..^ M I S J + 1 0 M
67 61 66 syl φ I S J + 1 0 M
68 26 67 ffvelrnd φ Q I S J + 1
69 68 rexrd φ Q I S J + 1 *
70 69 adantr φ ¬ Z E S J = Q I S J Q I S J + 1 *
71 1 3 4 fourierdlem11 φ A B A < B
72 71 simp1d φ A
73 71 simp2d φ B
74 72 73 iccssred φ A B
75 71 simp3d φ A < B
76 72 73 75 16 fourierdlem17 φ Z : A B A B
77 72 73 75 2 15 fourierdlem4 φ E : A B
78 77 60 ffvelrnd φ E S J A B
79 76 78 ffvelrnd φ Z E S J A B
80 74 79 sseldd φ Z E S J
81 80 adantr φ ¬ Z E S J = Q I S J Z E S J
82 63 adantr φ ¬ Z E S J = Q I S J Q I S J
83 72 rexrd φ A *
84 iocssre A * B A B
85 83 73 84 syl2anc φ A B
86 fzofzp1 J 0 ..^ N J + 1 0 N
87 17 86 syl φ J + 1 0 N
88 57 87 ffvelrnd φ S J + 1
89 77 88 ffvelrnd φ E S J + 1 A B
90 85 89 sseldd φ E S J + 1
91 54 simprrd φ i 0 ..^ N S i < S i + 1
92 fveq2 i = J S i = S J
93 oveq1 i = J i + 1 = J + 1
94 93 fveq2d i = J S i + 1 = S J + 1
95 92 94 breq12d i = J S i < S i + 1 S J < S J + 1
96 95 rspccva i 0 ..^ N S i < S i + 1 J 0 ..^ N S J < S J + 1
97 91 17 96 syl2anc φ S J < S J + 1
98 60 88 posdifd φ S J < S J + 1 0 < S J + 1 S J
99 97 98 mpbid φ 0 < S J + 1 S J
100 17 ancli φ φ J 0 ..^ N
101 eleq1 j = J j 0 ..^ N J 0 ..^ N
102 101 anbi2d j = J φ j 0 ..^ N φ J 0 ..^ N
103 oveq1 j = J j + 1 = J + 1
104 103 fveq2d j = J S j + 1 = S J + 1
105 104 fveq2d j = J E S j + 1 = E S J + 1
106 fveq2 j = J S j = S J
107 106 fveq2d j = J E S j = E S J
108 107 fveq2d j = J Z E S j = Z E S J
109 105 108 oveq12d j = J E S j + 1 Z E S j = E S J + 1 Z E S J
110 104 106 oveq12d j = J S j + 1 S j = S J + 1 S J
111 109 110 eqeq12d j = J E S j + 1 Z E S j = S j + 1 S j E S J + 1 Z E S J = S J + 1 S J
112 102 111 imbi12d j = J φ j 0 ..^ N E S j + 1 Z E S j = S j + 1 S j φ J 0 ..^ N E S J + 1 Z E S J = S J + 1 S J
113 2 oveq2i k T = k B A
114 113 oveq2i y + k T = y + k B A
115 114 eleq1i y + k T ran Q y + k B A ran Q
116 115 rexbii k y + k T ran Q k y + k B A ran Q
117 116 rgenw y C D k y + k T ran Q k y + k B A ran Q
118 rabbi y C D k y + k T ran Q k y + k B A ran Q y C D | k y + k T ran Q = y C D | k y + k B A ran Q
119 117 118 mpbi y C D | k y + k T ran Q = y C D | k y + k B A ran Q
120 119 uneq2i C D y C D | k y + k T ran Q = C D y C D | k y + k B A ran Q
121 120 fveq2i C D y C D | k y + k T ran Q = C D y C D | k y + k B A ran Q
122 121 oveq1i C D y C D | k y + k T ran Q 1 = C D y C D | k y + k B A ran Q 1
123 43 122 eqtri N = C D y C D | k y + k B A ran Q 1
124 isoeq5 C D y C D | k y + k T ran Q = C D y C D | k y + k B A ran Q f Isom < , < 0 N C D y C D | k y + k T ran Q f Isom < , < 0 N C D y C D | k y + k B A ran Q
125 120 124 ax-mp f Isom < , < 0 N C D y C D | k y + k T ran Q f Isom < , < 0 N C D y C D | k y + k B A ran Q
126 125 iotabii ι f | f Isom < , < 0 N C D y C D | k y + k T ran Q = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
127 47 126 eqtri S = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
128 eqid S j + B - E S j = S j + B - E S j
129 1 2 3 4 9 10 11 123 127 15 16 128 fourierdlem65 φ j 0 ..^ N E S j + 1 Z E S j = S j + 1 S j
130 112 129 vtoclg J 0 ..^ N φ J 0 ..^ N E S J + 1 Z E S J = S J + 1 S J
131 17 100 130 sylc φ E S J + 1 Z E S J = S J + 1 S J
132 99 131 breqtrrd φ 0 < E S J + 1 Z E S J
133 80 90 posdifd φ Z E S J < E S J + 1 0 < E S J + 1 Z E S J
134 132 133 mpbird φ Z E S J < E S J + 1
135 id φ φ
136 108 105 oveq12d j = J Z E S j E S j + 1 = Z E S J E S J + 1
137 106 fveq2d j = J I S j = I S J
138 137 fveq2d j = J Q I S j = Q I S J
139 137 oveq1d j = J I S j + 1 = I S J + 1
140 139 fveq2d j = J Q I S j + 1 = Q I S J + 1
141 138 140 oveq12d j = J Q I S j Q I S j + 1 = Q I S J Q I S J + 1
142 136 141 sseq12d j = J Z E S j E S j + 1 Q I S j Q I S j + 1 Z E S J E S J + 1 Q I S J Q I S J + 1
143 102 142 imbi12d j = J φ j 0 ..^ N Z E S j E S j + 1 Q I S j Q I S j + 1 φ J 0 ..^ N Z E S J E S J + 1 Q I S J Q I S J + 1
144 eqid S j + if S j + 1 S j < Q 1 A S j + 1 S j 2 Q 1 A 2 = S j + if S j + 1 S j < Q 1 A S j + 1 S j 2 Q 1 A 2
145 2 1 3 4 9 31 35 11 40 43 47 15 16 144 19 fourierdlem79 φ j 0 ..^ N Z E S j E S j + 1 Q I S j Q I S j + 1
146 143 145 vtoclg J 0 ..^ N φ J 0 ..^ N Z E S J E S J + 1 Q I S J Q I S J + 1
147 146 anabsi7 φ J 0 ..^ N Z E S J E S J + 1 Q I S J Q I S J + 1
148 135 17 147 syl2anc φ Z E S J E S J + 1 Q I S J Q I S J + 1
149 63 68 80 90 134 148 fourierdlem10 φ Q I S J Z E S J E S J + 1 Q I S J + 1
150 149 simpld φ Q I S J Z E S J
151 150 adantr φ ¬ Z E S J = Q I S J Q I S J Z E S J
152 neqne ¬ Z E S J = Q I S J Z E S J Q I S J
153 152 adantl φ ¬ Z E S J = Q I S J Z E S J Q I S J
154 82 81 151 153 leneltd φ ¬ Z E S J = Q I S J Q I S J < Z E S J
155 149 simprd φ E S J + 1 Q I S J + 1
156 80 90 68 134 155 ltletrd φ Z E S J < Q I S J + 1
157 156 adantr φ ¬ Z E S J = Q I S J Z E S J < Q I S J + 1
158 65 70 81 154 157 eliood φ ¬ Z E S J = Q I S J Z E S J Q I S J Q I S J + 1
159 fvres Z E S J Q I S J Q I S J + 1 F Q I S J Q I S J + 1 Z E S J = F Z E S J
160 158 159 syl φ ¬ Z E S J = Q I S J F Q I S J Q I S J + 1 Z E S J = F Z E S J
161 160 eqcomd φ ¬ Z E S J = Q I S J F Z E S J = F Q I S J Q I S J + 1 Z E S J
162 161 ifeq2da φ if Z E S J = Q I S J V I S J F Z E S J = if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J
163 fdm F : dom F =
164 5 163 syl φ dom F =
165 164 feq2d φ F : dom F F :
166 5 165 mpbird φ F : dom F
167 ioosscn Z E S J E S J + 1
168 167 a1i φ Z E S J E S J + 1
169 ioossre Z E S J E S J + 1
170 169 164 sseqtrrid φ Z E S J E S J + 1 dom F
171 88 90 resubcld φ S J + 1 E S J + 1
172 18 171 eqeltrid φ U
173 172 recnd φ U
174 eqid x | y Z E S J E S J + 1 x = y + U = x | y Z E S J E S J + 1 x = y + U
175 80 90 172 iooshift φ Z E S J + U E S J + 1 + U = x | y Z E S J E S J + 1 x = y + U
176 ioossre Z E S J + U E S J + 1 + U
177 176 164 sseqtrrid φ Z E S J + U E S J + 1 + U dom F
178 175 177 eqsstrrd φ x | y Z E S J E S J + 1 x = y + U dom F
179 elioore y Z E S J E S J + 1 y
180 73 72 resubcld φ B A
181 2 180 eqeltrid φ T
182 181 recnd φ T
183 72 73 posdifd φ A < B 0 < B A
184 75 183 mpbid φ 0 < B A
185 184 2 breqtrrdi φ 0 < T
186 185 gt0ne0d φ T 0
187 173 182 186 divcan1d φ U T T = U
188 187 eqcomd φ U = U T T
189 188 oveq2d φ y + U = y + U T T
190 189 adantr φ y y + U = y + U T T
191 190 fveq2d φ y F y + U = F y + U T T
192 5 adantr φ y F :
193 181 adantr φ y T
194 90 recnd φ E S J + 1
195 88 recnd φ S J + 1
196 194 195 negsubdi2d φ E S J + 1 S J + 1 = S J + 1 E S J + 1
197 196 eqcomd φ S J + 1 E S J + 1 = E S J + 1 S J + 1
198 197 oveq1d φ S J + 1 E S J + 1 T = E S J + 1 S J + 1 T
199 18 oveq1i U T = S J + 1 E S J + 1 T
200 199 a1i φ U T = S J + 1 E S J + 1 T
201 15 a1i φ E = x x + B x T T
202 id x = S J + 1 x = S J + 1
203 oveq2 x = S J + 1 B x = B S J + 1
204 203 oveq1d x = S J + 1 B x T = B S J + 1 T
205 204 fveq2d x = S J + 1 B x T = B S J + 1 T
206 205 oveq1d x = S J + 1 B x T T = B S J + 1 T T
207 202 206 oveq12d x = S J + 1 x + B x T T = S J + 1 + B S J + 1 T T
208 207 adantl φ x = S J + 1 x + B x T T = S J + 1 + B S J + 1 T T
209 73 88 resubcld φ B S J + 1
210 209 181 186 redivcld φ B S J + 1 T
211 210 flcld φ B S J + 1 T
212 211 zred φ B S J + 1 T
213 212 181 remulcld φ B S J + 1 T T
214 88 213 readdcld φ S J + 1 + B S J + 1 T T
215 201 208 88 214 fvmptd φ E S J + 1 = S J + 1 + B S J + 1 T T
216 215 oveq1d φ E S J + 1 S J + 1 = S J + 1 + B S J + 1 T T - S J + 1
217 212 recnd φ B S J + 1 T
218 217 182 mulcld φ B S J + 1 T T
219 195 218 pncan2d φ S J + 1 + B S J + 1 T T - S J + 1 = B S J + 1 T T
220 216 219 eqtrd φ E S J + 1 S J + 1 = B S J + 1 T T
221 220 218 eqeltrd φ E S J + 1 S J + 1
222 221 182 186 divnegd φ E S J + 1 S J + 1 T = E S J + 1 S J + 1 T
223 198 200 222 3eqtr4d φ U T = E S J + 1 S J + 1 T
224 220 oveq1d φ E S J + 1 S J + 1 T = B S J + 1 T T T
225 217 182 186 divcan4d φ B S J + 1 T T T = B S J + 1 T
226 224 225 eqtrd φ E S J + 1 S J + 1 T = B S J + 1 T
227 226 211 eqeltrd φ E S J + 1 S J + 1 T
228 227 znegcld φ E S J + 1 S J + 1 T
229 223 228 eqeltrd φ U T
230 229 adantr φ y U T
231 simpr φ y y
232 6 adantlr φ y x F x + T = F x
233 192 193 230 231 232 fperiodmul φ y F y + U T T = F y
234 191 233 eqtrd φ y F y + U = F y
235 179 234 sylan2 φ y Z E S J E S J + 1 F y + U = F y
236 23 simprrd φ i 0 ..^ M Q i < Q i + 1
237 fveq2 i = I S J Q i = Q I S J
238 oveq1 i = I S J i + 1 = I S J + 1
239 238 fveq2d i = I S J Q i + 1 = Q I S J + 1
240 237 239 breq12d i = I S J Q i < Q i + 1 Q I S J < Q I S J + 1
241 240 rspccva i 0 ..^ M Q i < Q i + 1 I S J 0 ..^ M Q I S J < Q I S J + 1
242 236 61 241 syl2anc φ Q I S J < Q I S J + 1
243 61 ancli φ φ I S J 0 ..^ M
244 eleq1 i = I S J i 0 ..^ M I S J 0 ..^ M
245 244 anbi2d i = I S J φ i 0 ..^ M φ I S J 0 ..^ M
246 237 239 oveq12d i = I S J Q i Q i + 1 = Q I S J Q I S J + 1
247 246 reseq2d i = I S J F Q i Q i + 1 = F Q I S J Q I S J + 1
248 246 oveq1d i = I S J Q i Q i + 1 cn = Q I S J Q I S J + 1 cn
249 247 248 eleq12d i = I S J F Q i Q i + 1 : Q i Q i + 1 cn F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
250 245 249 imbi12d i = I S J φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn φ I S J 0 ..^ M F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
251 250 7 vtoclg I S J 0 ..^ M φ I S J 0 ..^ M F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
252 61 243 251 sylc φ F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
253 nfv i φ I S J 0 ..^ M
254 nfmpt1 _ i i 0 ..^ M R
255 20 254 nfcxfr _ i V
256 nfcv _ i I S J
257 255 256 nffv _ i V I S J
258 257 nfel1 i V I S J F Q I S J Q I S J + 1 lim Q I S J
259 253 258 nfim i φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J
260 245 biimpar i = I S J φ I S J 0 ..^ M φ i 0 ..^ M
261 260 3adant2 i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M φ i 0 ..^ M
262 261 8 syl i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M R F Q i Q i + 1 lim Q i
263 fveq2 i = I S J V i = V I S J
264 263 eqcomd i = I S J V I S J = V i
265 264 adantr i = I S J φ I S J 0 ..^ M V I S J = V i
266 260 simprd i = I S J φ I S J 0 ..^ M i 0 ..^ M
267 elex R F Q i Q i + 1 lim Q i R V
268 260 8 267 3syl i = I S J φ I S J 0 ..^ M R V
269 20 fvmpt2 i 0 ..^ M R V V i = R
270 266 268 269 syl2anc i = I S J φ I S J 0 ..^ M V i = R
271 265 270 eqtrd i = I S J φ I S J 0 ..^ M V I S J = R
272 271 3adant2 i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M V I S J = R
273 247 237 oveq12d i = I S J F Q i Q i + 1 lim Q i = F Q I S J Q I S J + 1 lim Q I S J
274 273 eqcomd i = I S J F Q I S J Q I S J + 1 lim Q I S J = F Q i Q i + 1 lim Q i
275 274 3ad2ant1 i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M F Q I S J Q I S J + 1 lim Q I S J = F Q i Q i + 1 lim Q i
276 262 272 275 3eltr4d i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J
277 276 3exp i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J
278 8 2a1i i = I S J φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i
279 277 278 impbid i = I S J φ i 0 ..^ M R F Q i Q i + 1 lim Q i φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J
280 259 279 8 vtoclg1f I S J 0 ..^ M φ I S J 0 ..^ M V I S J F Q I S J Q I S J + 1 lim Q I S J
281 61 243 280 sylc φ V I S J F Q I S J Q I S J + 1 lim Q I S J
282 eqid if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J = if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J
283 eqid TopOpen fld 𝑡 Q I S J Q I S J + 1 = TopOpen fld 𝑡 Q I S J Q I S J + 1
284 63 68 242 252 281 80 90 134 148 282 283 fourierdlem32 φ if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J F Q I S J Q I S J + 1 Z E S J E S J + 1 lim Z E S J
285 148 resabs1d φ F Q I S J Q I S J + 1 Z E S J E S J + 1 = F Z E S J E S J + 1
286 285 oveq1d φ F Q I S J Q I S J + 1 Z E S J E S J + 1 lim Z E S J = F Z E S J E S J + 1 lim Z E S J
287 284 286 eleqtrd φ if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J F Z E S J E S J + 1 lim Z E S J
288 166 168 170 173 174 178 235 287 limcperiod φ if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J F x | y Z E S J E S J + 1 x = y + U lim Z E S J + U
289 18 oveq2i Z E S J + U = Z E S J + S J + 1 - E S J + 1
290 289 a1i φ Z E S J + U = Z E S J + S J + 1 - E S J + 1
291 9 31 iccssred φ C D
292 ax-resscn
293 291 292 sstrdi φ C D
294 11 51 50 fourierdlem15 φ S : 0 N C D
295 294 59 ffvelrnd φ S J C D
296 293 295 sseldd φ S J
297 195 296 subcld φ S J + 1 S J
298 80 recnd φ Z E S J
299 194 297 298 subsub23d φ E S J + 1 S J + 1 S J = Z E S J E S J + 1 Z E S J = S J + 1 S J
300 131 299 mpbird φ E S J + 1 S J + 1 S J = Z E S J
301 300 eqcomd φ Z E S J = E S J + 1 S J + 1 S J
302 301 oveq1d φ Z E S J + S J + 1 - E S J + 1 = E S J + 1 S J + 1 S J + S J + 1 - E S J + 1
303 194 297 subcld φ E S J + 1 S J + 1 S J
304 303 195 194 addsub12d φ E S J + 1 S J + 1 S J + S J + 1 - E S J + 1 = S J + 1 + E S J + 1 S J + 1 S J - E S J + 1
305 194 297 194 sub32d φ E S J + 1 - S J + 1 S J - E S J + 1 = E S J + 1 - E S J + 1 - S J + 1 S J
306 194 subidd φ E S J + 1 E S J + 1 = 0
307 306 oveq1d φ E S J + 1 - E S J + 1 - S J + 1 S J = 0 S J + 1 S J
308 df-neg S J + 1 S J = 0 S J + 1 S J
309 195 296 negsubdi2d φ S J + 1 S J = S J S J + 1
310 308 309 eqtr3id φ 0 S J + 1 S J = S J S J + 1
311 305 307 310 3eqtrd φ E S J + 1 - S J + 1 S J - E S J + 1 = S J S J + 1
312 311 oveq2d φ S J + 1 + E S J + 1 S J + 1 S J - E S J + 1 = S J + 1 + S J - S J + 1
313 195 296 pncan3d φ S J + 1 + S J - S J + 1 = S J
314 304 312 313 3eqtrd φ E S J + 1 S J + 1 S J + S J + 1 - E S J + 1 = S J
315 290 302 314 3eqtrd φ Z E S J + U = S J
316 315 oveq2d φ F x | y Z E S J E S J + 1 x = y + U lim Z E S J + U = F x | y Z E S J E S J + 1 x = y + U lim S J
317 288 316 eleqtrd φ if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J F x | y Z E S J E S J + 1 x = y + U lim S J
318 18 oveq2i E S J + 1 + U = E S J + 1 + S J + 1 - E S J + 1
319 194 195 pncan3d φ E S J + 1 + S J + 1 - E S J + 1 = S J + 1
320 318 319 eqtrid φ E S J + 1 + U = S J + 1
321 315 320 oveq12d φ Z E S J + U E S J + 1 + U = S J S J + 1
322 175 321 eqtr3d φ x | y Z E S J E S J + 1 x = y + U = S J S J + 1
323 322 reseq2d φ F x | y Z E S J E S J + 1 x = y + U = F S J S J + 1
324 323 oveq1d φ F x | y Z E S J E S J + 1 x = y + U lim S J = F S J S J + 1 lim S J
325 317 324 eleqtrd φ if Z E S J = Q I S J V I S J F Q I S J Q I S J + 1 Z E S J F S J S J + 1 lim S J
326 162 325 eqeltrd φ if Z E S J = Q I S J V I S J F Z E S J F S J S J + 1 lim S J