Metamath Proof Explorer


Theorem fourierdlem9

Description: H is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem9.f φ F :
fourierdlem9.x φ X
fourierdlem9.r φ Y
fourierdlem9.w φ W
fourierdlem9.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
Assertion fourierdlem9 φ H : π π

Proof

Step Hyp Ref Expression
1 fourierdlem9.f φ F :
2 fourierdlem9.x φ X
3 fourierdlem9.r φ Y
4 fourierdlem9.w φ W
5 fourierdlem9.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
6 0red φ s π π s = 0 0
7 1 adantr φ s π π F :
8 2 adantr φ s π π X
9 pire π
10 9 renegcli π
11 iccssre π π π π
12 10 9 11 mp2an π π
13 12 sseli s π π s
14 13 adantl φ s π π s
15 8 14 readdcld φ s π π X + s
16 7 15 ffvelrnd φ s π π F X + s
17 16 adantr φ s π π ¬ s = 0 F X + s
18 3 4 ifcld φ if 0 < s Y W
19 18 ad2antrr φ s π π ¬ s = 0 if 0 < s Y W
20 17 19 resubcld φ s π π ¬ s = 0 F X + s if 0 < s Y W
21 14 adantr φ s π π ¬ s = 0 s
22 neqne ¬ s = 0 s 0
23 22 adantl φ s π π ¬ s = 0 s 0
24 20 21 23 redivcld φ s π π ¬ s = 0 F X + s if 0 < s Y W s
25 6 24 ifclda φ s π π if s = 0 0 F X + s if 0 < s Y W s
26 25 5 fmptd φ H : π π