Metamath Proof Explorer


Theorem fourierdlem90

Description: Given a piecewise continuous function, it is still continuous with respect to an open interval of the moved partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem90.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem90.t T = B A
fourierdlem90.m φ M
fourierdlem90.q φ Q P M
fourierdlem90.f φ F :
fourierdlem90.6 φ x F x + T = F x
fourierdlem90.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem90.c φ C
fourierdlem90.d φ D C +∞
fourierdlem90.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
fourierdlem90.h H = C D y C D | k y + k T ran Q
fourierdlem90.n N = H 1
fourierdlem90.s S = ι f | f Isom < , < 0 N H
fourierdlem90.e E = x x + B x T T
fourierdlem90.J L = y A B if y = B A y
fourierdlem90.17 φ J 0 ..^ N
fourierdlem90.u U = S J + 1 E S J + 1
fourierdlem90.g G = F L E S J E S J + 1
fourierdlem90.r R = y L E S J + U E S J + 1 + U G y U
fourierdlem90.i I = x sup i 0 ..^ M | Q i L E x <
Assertion fourierdlem90 φ F S J S J + 1 : S J S J + 1 cn

Proof

Step Hyp Ref Expression
1 fourierdlem90.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem90.t T = B A
3 fourierdlem90.m φ M
4 fourierdlem90.q φ Q P M
5 fourierdlem90.f φ F :
6 fourierdlem90.6 φ x F x + T = F x
7 fourierdlem90.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
8 fourierdlem90.c φ C
9 fourierdlem90.d φ D C +∞
10 fourierdlem90.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
11 fourierdlem90.h H = C D y C D | k y + k T ran Q
12 fourierdlem90.n N = H 1
13 fourierdlem90.s S = ι f | f Isom < , < 0 N H
14 fourierdlem90.e E = x x + B x T T
15 fourierdlem90.J L = y A B if y = B A y
16 fourierdlem90.17 φ J 0 ..^ N
17 fourierdlem90.u U = S J + 1 E S J + 1
18 fourierdlem90.g G = F L E S J E S J + 1
19 fourierdlem90.r R = y L E S J + U E S J + 1 + U G y U
20 fourierdlem90.i I = x sup i 0 ..^ M | Q i L E x <
21 1 3 4 fourierdlem11 φ A B A < B
22 21 simp1d φ A
23 21 simp2d φ B
24 22 23 iccssred φ A B
25 21 simp3d φ A < B
26 22 23 25 15 fourierdlem17 φ L : A B A B
27 22 23 25 2 14 fourierdlem4 φ E : A B
28 elioore D C +∞ D
29 9 28 syl φ D
30 elioo4g D C +∞ C * +∞ * D C < D D < +∞
31 9 30 sylib φ C * +∞ * D C < D D < +∞
32 31 simprd φ C < D D < +∞
33 32 simpld φ C < D
34 2 1 3 4 8 29 33 10 11 12 13 fourierdlem54 φ N S O N S Isom < , < 0 N H
35 34 simpld φ N S O N
36 35 simprd φ S O N
37 35 simpld φ N
38 10 fourierdlem2 N S O N S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
39 37 38 syl φ S O N S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
40 36 39 mpbid φ S 0 N S 0 = C S N = D i 0 ..^ N S i < S i + 1
41 40 simpld φ S 0 N
42 elmapi S 0 N S : 0 N
43 41 42 syl φ S : 0 N
44 elfzofz J 0 ..^ N J 0 N
45 16 44 syl φ J 0 N
46 43 45 ffvelrnd φ S J
47 27 46 ffvelrnd φ E S J A B
48 26 47 ffvelrnd φ L E S J A B
49 24 48 sseldd φ L E S J
50 22 rexrd φ A *
51 iocssre A * B A B
52 50 23 51 syl2anc φ A B
53 fzofzp1 J 0 ..^ N J + 1 0 N
54 16 53 syl φ J + 1 0 N
55 43 54 ffvelrnd φ S J + 1
56 27 55 ffvelrnd φ E S J + 1 A B
57 52 56 sseldd φ E S J + 1
58 eqid L E S J E S J + 1 = L E S J E S J + 1
59 55 57 resubcld φ S J + 1 E S J + 1
60 17 59 eqeltrid φ U
61 eqid L E S J + U E S J + 1 + U = L E S J + U E S J + 1 + U
62 eleq1 j = J j 0 ..^ N J 0 ..^ N
63 62 anbi2d j = J φ j 0 ..^ N φ J 0 ..^ N
64 fveq2 j = J S j = S J
65 64 fveq2d j = J E S j = E S J
66 65 fveq2d j = J L E S j = L E S J
67 oveq1 j = J j + 1 = J + 1
68 67 fveq2d j = J S j + 1 = S J + 1
69 68 fveq2d j = J E S j + 1 = E S J + 1
70 66 69 oveq12d j = J L E S j E S j + 1 = L E S J E S J + 1
71 64 fveq2d j = J I S j = I S J
72 71 fveq2d j = J Q I S j = Q I S J
73 71 oveq1d j = J I S j + 1 = I S J + 1
74 73 fveq2d j = J Q I S j + 1 = Q I S J + 1
75 72 74 oveq12d j = J Q I S j Q I S j + 1 = Q I S J Q I S J + 1
76 70 75 sseq12d j = J L E S j E S j + 1 Q I S j Q I S j + 1 L E S J E S J + 1 Q I S J Q I S J + 1
77 63 76 imbi12d j = J φ j 0 ..^ N L E S j E S j + 1 Q I S j Q I S j + 1 φ J 0 ..^ N L E S J E S J + 1 Q I S J Q I S J + 1
78 2 oveq2i k T = k B A
79 78 oveq2i y + k T = y + k B A
80 79 eleq1i y + k T ran Q y + k B A ran Q
81 80 rexbii k y + k T ran Q k y + k B A ran Q
82 81 a1i y C D k y + k T ran Q k y + k B A ran Q
83 82 rabbiia y C D | k y + k T ran Q = y C D | k y + k B A ran Q
84 83 uneq2i C D y C D | k y + k T ran Q = C D y C D | k y + k B A ran Q
85 11 84 eqtri H = C D y C D | k y + k B A ran Q
86 id y = x y = x
87 2 eqcomi B A = T
88 87 oveq2i k B A = k T
89 88 a1i y = x k B A = k T
90 86 89 oveq12d y = x y + k B A = x + k T
91 90 eleq1d y = x y + k B A ran Q x + k T ran Q
92 91 rexbidv y = x k y + k B A ran Q k x + k T ran Q
93 92 cbvrabv y C D | k y + k B A ran Q = x C D | k x + k T ran Q
94 93 uneq2i C D y C D | k y + k B A ran Q = C D x C D | k x + k T ran Q
95 85 94 eqtri H = C D x C D | k x + k T ran Q
96 eqid S j + if S j + 1 S j < Q 1 A S j + 1 S j 2 Q 1 A 2 = S j + if S j + 1 S j < Q 1 A S j + 1 S j 2 Q 1 A 2
97 2 1 3 4 8 29 33 10 95 12 13 14 15 96 20 fourierdlem79 φ j 0 ..^ N L E S j E S j + 1 Q I S j Q I S j + 1
98 77 97 vtoclg J 0 ..^ N φ J 0 ..^ N L E S J E S J + 1 Q I S J Q I S J + 1
99 98 anabsi7 φ J 0 ..^ N L E S J E S J + 1 Q I S J Q I S J + 1
100 16 99 mpdan φ L E S J E S J + 1 Q I S J Q I S J + 1
101 100 resabs1d φ F Q I S J Q I S J + 1 L E S J E S J + 1 = F L E S J E S J + 1
102 101 eqcomd φ F L E S J E S J + 1 = F Q I S J Q I S J + 1 L E S J E S J + 1
103 1 3 4 2 14 15 20 fourierdlem37 φ I : 0 ..^ M x sup i 0 ..^ M | Q i L E x < i 0 ..^ M | Q i L E x
104 103 simpld φ I : 0 ..^ M
105 104 46 ffvelrnd φ I S J 0 ..^ M
106 105 ancli φ φ I S J 0 ..^ M
107 eleq1 i = I S J i 0 ..^ M I S J 0 ..^ M
108 107 anbi2d i = I S J φ i 0 ..^ M φ I S J 0 ..^ M
109 fveq2 i = I S J Q i = Q I S J
110 oveq1 i = I S J i + 1 = I S J + 1
111 110 fveq2d i = I S J Q i + 1 = Q I S J + 1
112 109 111 oveq12d i = I S J Q i Q i + 1 = Q I S J Q I S J + 1
113 112 reseq2d i = I S J F Q i Q i + 1 = F Q I S J Q I S J + 1
114 112 oveq1d i = I S J Q i Q i + 1 cn = Q I S J Q I S J + 1 cn
115 113 114 eleq12d i = I S J F Q i Q i + 1 : Q i Q i + 1 cn F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
116 108 115 imbi12d i = I S J φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn φ I S J 0 ..^ M F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
117 116 7 vtoclg I S J 0 ..^ M φ I S J 0 ..^ M F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
118 105 106 117 sylc φ F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn
119 rescncf L E S J E S J + 1 Q I S J Q I S J + 1 F Q I S J Q I S J + 1 : Q I S J Q I S J + 1 cn F Q I S J Q I S J + 1 L E S J E S J + 1 : L E S J E S J + 1 cn
120 100 118 119 sylc φ F Q I S J Q I S J + 1 L E S J E S J + 1 : L E S J E S J + 1 cn
121 102 120 eqeltrd φ F L E S J E S J + 1 : L E S J E S J + 1 cn
122 18 121 eqeltrid φ G : L E S J E S J + 1 cn
123 49 57 58 60 61 122 19 cncfshiftioo φ R : L E S J + U E S J + 1 + U cn
124 19 a1i φ R = y L E S J + U E S J + 1 + U G y U
125 17 oveq2i L E S J + U = L E S J + S J + 1 - E S J + 1
126 125 a1i φ L E S J + U = L E S J + S J + 1 - E S J + 1
127 69 66 oveq12d j = J E S j + 1 L E S j = E S J + 1 L E S J
128 68 64 oveq12d j = J S j + 1 S j = S J + 1 S J
129 127 128 eqeq12d j = J E S j + 1 L E S j = S j + 1 S j E S J + 1 L E S J = S J + 1 S J
130 63 129 imbi12d j = J φ j 0 ..^ N E S j + 1 L E S j = S j + 1 S j φ J 0 ..^ N E S J + 1 L E S J = S J + 1 S J
131 85 fveq2i H = C D y C D | k y + k B A ran Q
132 131 oveq1i H 1 = C D y C D | k y + k B A ran Q 1
133 12 132 eqtri N = C D y C D | k y + k B A ran Q 1
134 isoeq5 H = C D y C D | k y + k B A ran Q f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k B A ran Q
135 85 134 ax-mp f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k B A ran Q
136 135 iotabii ι f | f Isom < , < 0 N H = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
137 13 136 eqtri S = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
138 eqid S j + B - E S j = S j + B - E S j
139 1 2 3 4 8 9 10 133 137 14 15 138 fourierdlem65 φ j 0 ..^ N E S j + 1 L E S j = S j + 1 S j
140 130 139 vtoclg J 0 ..^ N φ J 0 ..^ N E S J + 1 L E S J = S J + 1 S J
141 140 anabsi7 φ J 0 ..^ N E S J + 1 L E S J = S J + 1 S J
142 16 141 mpdan φ E S J + 1 L E S J = S J + 1 S J
143 57 recnd φ E S J + 1
144 55 recnd φ S J + 1
145 8 29 iccssred φ C D
146 ax-resscn
147 145 146 sstrdi φ C D
148 10 37 36 fourierdlem15 φ S : 0 N C D
149 148 45 ffvelrnd φ S J C D
150 147 149 sseldd φ S J
151 144 150 subcld φ S J + 1 S J
152 49 recnd φ L E S J
153 143 151 152 subsub23d φ E S J + 1 S J + 1 S J = L E S J E S J + 1 L E S J = S J + 1 S J
154 142 153 mpbird φ E S J + 1 S J + 1 S J = L E S J
155 154 eqcomd φ L E S J = E S J + 1 S J + 1 S J
156 155 oveq1d φ L E S J + S J + 1 - E S J + 1 = E S J + 1 S J + 1 S J + S J + 1 - E S J + 1
157 143 151 subcld φ E S J + 1 S J + 1 S J
158 157 144 143 addsub12d φ E S J + 1 S J + 1 S J + S J + 1 - E S J + 1 = S J + 1 + E S J + 1 S J + 1 S J - E S J + 1
159 143 151 143 sub32d φ E S J + 1 - S J + 1 S J - E S J + 1 = E S J + 1 - E S J + 1 - S J + 1 S J
160 143 subidd φ E S J + 1 E S J + 1 = 0
161 160 oveq1d φ E S J + 1 - E S J + 1 - S J + 1 S J = 0 S J + 1 S J
162 df-neg S J + 1 S J = 0 S J + 1 S J
163 144 150 negsubdi2d φ S J + 1 S J = S J S J + 1
164 162 163 eqtr3id φ 0 S J + 1 S J = S J S J + 1
165 159 161 164 3eqtrd φ E S J + 1 - S J + 1 S J - E S J + 1 = S J S J + 1
166 165 oveq2d φ S J + 1 + E S J + 1 S J + 1 S J - E S J + 1 = S J + 1 + S J - S J + 1
167 144 150 pncan3d φ S J + 1 + S J - S J + 1 = S J
168 158 166 167 3eqtrd φ E S J + 1 S J + 1 S J + S J + 1 - E S J + 1 = S J
169 126 156 168 3eqtrd φ L E S J + U = S J
170 17 oveq2i E S J + 1 + U = E S J + 1 + S J + 1 - E S J + 1
171 143 144 pncan3d φ E S J + 1 + S J + 1 - E S J + 1 = S J + 1
172 170 171 syl5eq φ E S J + 1 + U = S J + 1
173 169 172 oveq12d φ L E S J + U E S J + 1 + U = S J S J + 1
174 173 mpteq1d φ y L E S J + U E S J + 1 + U G y U = y S J S J + 1 G y U
175 5 feqmptd φ F = y F y
176 175 reseq1d φ F S J S J + 1 = y F y S J S J + 1
177 ioossre S J S J + 1
178 177 a1i φ S J S J + 1
179 178 resmptd φ y F y S J S J + 1 = y S J S J + 1 F y
180 18 fveq1i G y U = F L E S J E S J + 1 y U
181 180 a1i φ y S J S J + 1 G y U = F L E S J E S J + 1 y U
182 49 adantr φ y S J S J + 1 L E S J
183 182 rexrd φ y S J S J + 1 L E S J *
184 57 adantr φ y S J S J + 1 E S J + 1
185 184 rexrd φ y S J S J + 1 E S J + 1 *
186 178 sselda φ y S J S J + 1 y
187 60 adantr φ y S J S J + 1 U
188 186 187 resubcld φ y S J S J + 1 y U
189 46 rexrd φ S J *
190 189 adantr φ y S J S J + 1 S J *
191 55 rexrd φ S J + 1 *
192 191 adantr φ y S J S J + 1 S J + 1 *
193 simpr φ y S J S J + 1 y S J S J + 1
194 ioogtlb S J * S J + 1 * y S J S J + 1 S J < y
195 190 192 193 194 syl3anc φ y S J S J + 1 S J < y
196 169 adantr φ y S J S J + 1 L E S J + U = S J
197 186 recnd φ y S J S J + 1 y
198 187 recnd φ y S J S J + 1 U
199 197 198 npcand φ y S J S J + 1 y - U + U = y
200 195 196 199 3brtr4d φ y S J S J + 1 L E S J + U < y - U + U
201 182 188 187 ltadd1d φ y S J S J + 1 L E S J < y U L E S J + U < y - U + U
202 200 201 mpbird φ y S J S J + 1 L E S J < y U
203 iooltub S J * S J + 1 * y S J S J + 1 y < S J + 1
204 190 192 193 203 syl3anc φ y S J S J + 1 y < S J + 1
205 172 adantr φ y S J S J + 1 E S J + 1 + U = S J + 1
206 204 199 205 3brtr4d φ y S J S J + 1 y - U + U < E S J + 1 + U
207 188 184 187 ltadd1d φ y S J S J + 1 y U < E S J + 1 y - U + U < E S J + 1 + U
208 206 207 mpbird φ y S J S J + 1 y U < E S J + 1
209 183 185 188 202 208 eliood φ y S J S J + 1 y U L E S J E S J + 1
210 fvres y U L E S J E S J + 1 F L E S J E S J + 1 y U = F y U
211 209 210 syl φ y S J S J + 1 F L E S J E S J + 1 y U = F y U
212 17 oveq2i y U = y S J + 1 E S J + 1
213 212 a1i φ y S J S J + 1 y U = y S J + 1 E S J + 1
214 144 adantr φ y S J S J + 1 S J + 1
215 143 adantr φ y S J S J + 1 E S J + 1
216 197 214 215 subsub2d φ y S J S J + 1 y S J + 1 E S J + 1 = y + E S J + 1 - S J + 1
217 215 214 subcld φ y S J S J + 1 E S J + 1 S J + 1
218 23 22 resubcld φ B A
219 2 218 eqeltrid φ T
220 219 recnd φ T
221 220 adantr φ y S J S J + 1 T
222 22 23 posdifd φ A < B 0 < B A
223 25 222 mpbid φ 0 < B A
224 223 2 breqtrrdi φ 0 < T
225 224 gt0ne0d φ T 0
226 225 adantr φ y S J S J + 1 T 0
227 217 221 226 divcan1d φ y S J S J + 1 E S J + 1 S J + 1 T T = E S J + 1 S J + 1
228 227 eqcomd φ y S J S J + 1 E S J + 1 S J + 1 = E S J + 1 S J + 1 T T
229 228 oveq2d φ y S J S J + 1 y + E S J + 1 - S J + 1 = y + E S J + 1 S J + 1 T T
230 213 216 229 3eqtrd φ y S J S J + 1 y U = y + E S J + 1 S J + 1 T T
231 230 fveq2d φ y S J S J + 1 F y U = F y + E S J + 1 S J + 1 T T
232 5 adantr φ y S J S J + 1 F :
233 219 adantr φ y S J S J + 1 T
234 14 a1i φ E = x x + B x T T
235 id x = S J + 1 x = S J + 1
236 oveq2 x = S J + 1 B x = B S J + 1
237 236 oveq1d x = S J + 1 B x T = B S J + 1 T
238 237 fveq2d x = S J + 1 B x T = B S J + 1 T
239 238 oveq1d x = S J + 1 B x T T = B S J + 1 T T
240 235 239 oveq12d x = S J + 1 x + B x T T = S J + 1 + B S J + 1 T T
241 240 adantl φ x = S J + 1 x + B x T T = S J + 1 + B S J + 1 T T
242 23 55 resubcld φ B S J + 1
243 242 219 225 redivcld φ B S J + 1 T
244 243 flcld φ B S J + 1 T
245 244 zred φ B S J + 1 T
246 245 219 remulcld φ B S J + 1 T T
247 55 246 readdcld φ S J + 1 + B S J + 1 T T
248 234 241 55 247 fvmptd φ E S J + 1 = S J + 1 + B S J + 1 T T
249 248 oveq1d φ E S J + 1 S J + 1 = S J + 1 + B S J + 1 T T - S J + 1
250 245 recnd φ B S J + 1 T
251 250 220 mulcld φ B S J + 1 T T
252 144 251 pncan2d φ S J + 1 + B S J + 1 T T - S J + 1 = B S J + 1 T T
253 249 252 eqtrd φ E S J + 1 S J + 1 = B S J + 1 T T
254 253 oveq1d φ E S J + 1 S J + 1 T = B S J + 1 T T T
255 250 220 225 divcan4d φ B S J + 1 T T T = B S J + 1 T
256 254 255 eqtrd φ E S J + 1 S J + 1 T = B S J + 1 T
257 256 244 eqeltrd φ E S J + 1 S J + 1 T
258 257 adantr φ y S J S J + 1 E S J + 1 S J + 1 T
259 6 adantlr φ y S J S J + 1 x F x + T = F x
260 232 233 258 186 259 fperiodmul φ y S J S J + 1 F y + E S J + 1 S J + 1 T T = F y
261 231 260 eqtrd φ y S J S J + 1 F y U = F y
262 181 211 261 3eqtrrd φ y S J S J + 1 F y = G y U
263 262 mpteq2dva φ y S J S J + 1 F y = y S J S J + 1 G y U
264 176 179 263 3eqtrrd φ y S J S J + 1 G y U = F S J S J + 1
265 124 174 264 3eqtrd φ R = F S J S J + 1
266 173 oveq1d φ L E S J + U E S J + 1 + U cn = S J S J + 1 cn
267 123 265 266 3eltr3d φ F S J S J + 1 : S J S J + 1 cn