Metamath Proof Explorer


Theorem fourierdlem92

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by its period T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem92.a φ A
fourierdlem92.b φ B
fourierdlem92.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem92.m φ M
fourierdlem92.t φ T
fourierdlem92.q φ Q P M
fourierdlem92.fper φ x A B F x + T = F x
fourierdlem92.s S = i 0 M Q i + T
fourierdlem92.h H = m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1
fourierdlem92.f φ F :
fourierdlem92.cncf φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem92.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem92.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
Assertion fourierdlem92 φ A + T B + T F x dx = A B F x dx

Proof

Step Hyp Ref Expression
1 fourierdlem92.a φ A
2 fourierdlem92.b φ B
3 fourierdlem92.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
4 fourierdlem92.m φ M
5 fourierdlem92.t φ T
6 fourierdlem92.q φ Q P M
7 fourierdlem92.fper φ x A B F x + T = F x
8 fourierdlem92.s S = i 0 M Q i + T
9 fourierdlem92.h H = m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1
10 fourierdlem92.f φ F :
11 fourierdlem92.cncf φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
12 fourierdlem92.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
13 fourierdlem92.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
14 1 adantr φ 0 < T A
15 2 adantr φ 0 < T B
16 4 adantr φ 0 < T M
17 5 adantr φ 0 < T T
18 simpr φ 0 < T 0 < T
19 17 18 elrpd φ 0 < T T +
20 6 adantr φ 0 < T Q P M
21 7 adantlr φ 0 < T x A B F x + T = F x
22 fveq2 j = i Q j = Q i
23 22 oveq1d j = i Q j + T = Q i + T
24 23 cbvmptv j 0 M Q j + T = i 0 M Q i + T
25 10 adantr φ 0 < T F :
26 11 adantlr φ 0 < T i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
27 12 adantlr φ 0 < T i 0 ..^ M R F Q i Q i + 1 lim Q i
28 13 adantlr φ 0 < T i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
29 eqeq1 y = x y = Q i x = Q i
30 eqeq1 y = x y = Q i + 1 x = Q i + 1
31 fveq2 y = x F y = F x
32 30 31 ifbieq2d y = x if y = Q i + 1 L F y = if x = Q i + 1 L F x
33 29 32 ifbieq2d y = x if y = Q i R if y = Q i + 1 L F y = if x = Q i R if x = Q i + 1 L F x
34 33 cbvmptv y Q i Q i + 1 if y = Q i R if y = Q i + 1 L F y = x Q i Q i + 1 if x = Q i R if x = Q i + 1 L F x
35 eqid x j 0 M Q j + T i j 0 M Q j + T i + 1 y Q i Q i + 1 if y = Q i R if y = Q i + 1 L F y x T = x j 0 M Q j + T i j 0 M Q j + T i + 1 y Q i Q i + 1 if y = Q i R if y = Q i + 1 L F y x T
36 14 15 3 16 19 20 21 24 25 26 27 28 34 35 fourierdlem81 φ 0 < T A + T B + T F x dx = A B F x dx
37 simpr φ T = 0 T = 0
38 37 oveq2d φ T = 0 A + T = A + 0
39 1 recnd φ A
40 39 adantr φ T = 0 A
41 40 addid1d φ T = 0 A + 0 = A
42 38 41 eqtrd φ T = 0 A + T = A
43 37 oveq2d φ T = 0 B + T = B + 0
44 2 recnd φ B
45 44 adantr φ T = 0 B
46 45 addid1d φ T = 0 B + 0 = B
47 43 46 eqtrd φ T = 0 B + T = B
48 42 47 oveq12d φ T = 0 A + T B + T = A B
49 48 itgeq1d φ T = 0 A + T B + T F x dx = A B F x dx
50 49 adantlr φ ¬ 0 < T T = 0 A + T B + T F x dx = A B F x dx
51 simpll φ ¬ 0 < T ¬ T = 0 φ
52 simpr φ ¬ 0 < T ¬ T = 0 ¬ T = 0
53 simplr φ ¬ 0 < T ¬ T = 0 ¬ 0 < T
54 ioran ¬ T = 0 0 < T ¬ T = 0 ¬ 0 < T
55 52 53 54 sylanbrc φ ¬ 0 < T ¬ T = 0 ¬ T = 0 0 < T
56 51 5 syl φ ¬ 0 < T ¬ T = 0 T
57 0red φ ¬ 0 < T ¬ T = 0 0
58 56 57 lttrid φ ¬ 0 < T ¬ T = 0 T < 0 ¬ T = 0 0 < T
59 55 58 mpbird φ ¬ 0 < T ¬ T = 0 T < 0
60 56 lt0neg1d φ ¬ 0 < T ¬ T = 0 T < 0 0 < T
61 59 60 mpbid φ ¬ 0 < T ¬ T = 0 0 < T
62 1 5 readdcld φ A + T
63 62 recnd φ A + T
64 5 recnd φ T
65 63 64 negsubd φ A + T + T = A + T - T
66 39 64 pncand φ A + T - T = A
67 65 66 eqtrd φ A + T + T = A
68 2 5 readdcld φ B + T
69 68 recnd φ B + T
70 69 64 negsubd φ B + T + T = B + T - T
71 44 64 pncand φ B + T - T = B
72 70 71 eqtrd φ B + T + T = B
73 67 72 oveq12d φ A + T + T B + T + T = A B
74 73 eqcomd φ A B = A + T + T B + T + T
75 74 itgeq1d φ A B F x dx = A + T + T B + T + T F x dx
76 75 adantr φ 0 < T A B F x dx = A + T + T B + T + T F x dx
77 1 adantr φ 0 < T A
78 5 adantr φ 0 < T T
79 77 78 readdcld φ 0 < T A + T
80 2 adantr φ 0 < T B
81 80 78 readdcld φ 0 < T B + T
82 eqid m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1 = m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1
83 4 adantr φ 0 < T M
84 78 renegcld φ 0 < T T
85 simpr φ 0 < T 0 < T
86 84 85 elrpd φ 0 < T T +
87 3 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
88 4 87 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
89 6 88 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
90 89 simpld φ Q 0 M
91 elmapi Q 0 M Q : 0 M
92 90 91 syl φ Q : 0 M
93 92 ffvelrnda φ i 0 M Q i
94 5 adantr φ i 0 M T
95 93 94 readdcld φ i 0 M Q i + T
96 95 8 fmptd φ S : 0 M
97 reex V
98 97 a1i φ V
99 ovex 0 M V
100 99 a1i φ 0 M V
101 98 100 elmapd φ S 0 M S : 0 M
102 96 101 mpbird φ S 0 M
103 8 a1i φ S = i 0 M Q i + T
104 fveq2 i = 0 Q i = Q 0
105 104 oveq1d i = 0 Q i + T = Q 0 + T
106 105 adantl φ i = 0 Q i + T = Q 0 + T
107 0zd φ 0
108 4 nnzd φ M
109 0le0 0 0
110 109 a1i φ 0 0
111 nnnn0 M M 0
112 111 nn0ge0d M 0 M
113 4 112 syl φ 0 M
114 107 108 107 110 113 elfzd φ 0 0 M
115 92 114 ffvelrnd φ Q 0
116 115 5 readdcld φ Q 0 + T
117 103 106 114 116 fvmptd φ S 0 = Q 0 + T
118 simprll Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1 Q 0 = A
119 89 118 syl φ Q 0 = A
120 119 oveq1d φ Q 0 + T = A + T
121 117 120 eqtrd φ S 0 = A + T
122 fveq2 i = M Q i = Q M
123 122 oveq1d i = M Q i + T = Q M + T
124 123 adantl φ i = M Q i + T = Q M + T
125 4 nnnn0d φ M 0
126 nn0uz 0 = 0
127 125 126 eleqtrdi φ M 0
128 eluzfz2 M 0 M 0 M
129 127 128 syl φ M 0 M
130 92 129 ffvelrnd φ Q M
131 130 5 readdcld φ Q M + T
132 103 124 129 131 fvmptd φ S M = Q M + T
133 simprlr Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1 Q M = B
134 89 133 syl φ Q M = B
135 134 oveq1d φ Q M + T = B + T
136 132 135 eqtrd φ S M = B + T
137 121 136 jca φ S 0 = A + T S M = B + T
138 92 adantr φ i 0 ..^ M Q : 0 M
139 elfzofz i 0 ..^ M i 0 M
140 139 adantl φ i 0 ..^ M i 0 M
141 138 140 ffvelrnd φ i 0 ..^ M Q i
142 fzofzp1 i 0 ..^ M i + 1 0 M
143 142 adantl φ i 0 ..^ M i + 1 0 M
144 138 143 ffvelrnd φ i 0 ..^ M Q i + 1
145 5 adantr φ i 0 ..^ M T
146 89 simprrd φ i 0 ..^ M Q i < Q i + 1
147 146 r19.21bi φ i 0 ..^ M Q i < Q i + 1
148 141 144 145 147 ltadd1dd φ i 0 ..^ M Q i + T < Q i + 1 + T
149 141 145 readdcld φ i 0 ..^ M Q i + T
150 8 fvmpt2 i 0 M Q i + T S i = Q i + T
151 140 149 150 syl2anc φ i 0 ..^ M S i = Q i + T
152 8 24 eqtr4i S = j 0 M Q j + T
153 152 a1i φ i 0 ..^ M S = j 0 M Q j + T
154 fveq2 j = i + 1 Q j = Q i + 1
155 154 oveq1d j = i + 1 Q j + T = Q i + 1 + T
156 155 adantl φ i 0 ..^ M j = i + 1 Q j + T = Q i + 1 + T
157 144 145 readdcld φ i 0 ..^ M Q i + 1 + T
158 153 156 143 157 fvmptd φ i 0 ..^ M S i + 1 = Q i + 1 + T
159 148 151 158 3brtr4d φ i 0 ..^ M S i < S i + 1
160 159 ralrimiva φ i 0 ..^ M S i < S i + 1
161 102 137 160 jca32 φ S 0 M S 0 = A + T S M = B + T i 0 ..^ M S i < S i + 1
162 9 fourierdlem2 M S H M S 0 M S 0 = A + T S M = B + T i 0 ..^ M S i < S i + 1
163 4 162 syl φ S H M S 0 M S 0 = A + T S M = B + T i 0 ..^ M S i < S i + 1
164 161 163 mpbird φ S H M
165 9 fveq1i H M = m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1 M
166 164 165 eleqtrdi φ S m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1 M
167 166 adantr φ 0 < T S m p 0 m | p 0 = A + T p m = B + T i 0 ..^ m p i < p i + 1 M
168 62 adantr φ x A + T B + T A + T
169 68 adantr φ x A + T B + T B + T
170 simpr φ x A + T B + T x A + T B + T
171 eliccre A + T B + T x A + T B + T x
172 168 169 170 171 syl3anc φ x A + T B + T x
173 172 recnd φ x A + T B + T x
174 64 negcld φ T
175 174 adantr φ x A + T B + T T
176 173 175 addcld φ x A + T B + T x + T
177 simpl φ x A + T B + T φ
178 1 adantr φ x A + T B + T A
179 2 adantr φ x A + T B + T B
180 5 renegcld φ T
181 180 adantr φ x A + T B + T T
182 172 181 readdcld φ x A + T B + T x + T
183 65 66 eqtr2d φ A = A + T + T
184 183 adantr φ x A + T B + T A = A + T + T
185 168 rexrd φ x A + T B + T A + T *
186 169 rexrd φ x A + T B + T B + T *
187 iccgelb A + T * B + T * x A + T B + T A + T x
188 185 186 170 187 syl3anc φ x A + T B + T A + T x
189 168 172 181 188 leadd1dd φ x A + T B + T A + T + T x + T
190 184 189 eqbrtrd φ x A + T B + T A x + T
191 iccleub A + T * B + T * x A + T B + T x B + T
192 185 186 170 191 syl3anc φ x A + T B + T x B + T
193 172 169 181 192 leadd1dd φ x A + T B + T x + T B + T + T
194 169 recnd φ x A + T B + T B + T
195 64 adantr φ x A + T B + T T
196 194 195 negsubd φ x A + T B + T B + T + T = B + T - T
197 71 adantr φ x A + T B + T B + T - T = B
198 196 197 eqtrd φ x A + T B + T B + T + T = B
199 193 198 breqtrd φ x A + T B + T x + T B
200 178 179 182 190 199 eliccd φ x A + T B + T x + T A B
201 177 200 jca φ x A + T B + T φ x + T A B
202 eleq1 y = x + T y A B x + T A B
203 202 anbi2d y = x + T φ y A B φ x + T A B
204 oveq1 y = x + T y + T = x + T + T
205 204 fveq2d y = x + T F y + T = F x + T + T
206 fveq2 y = x + T F y = F x + T
207 205 206 eqeq12d y = x + T F y + T = F y F x + T + T = F x + T
208 203 207 imbi12d y = x + T φ y A B F y + T = F y φ x + T A B F x + T + T = F x + T
209 eleq1 x = y x A B y A B
210 209 anbi2d x = y φ x A B φ y A B
211 oveq1 x = y x + T = y + T
212 211 fveq2d x = y F x + T = F y + T
213 fveq2 x = y F x = F y
214 212 213 eqeq12d x = y F x + T = F x F y + T = F y
215 210 214 imbi12d x = y φ x A B F x + T = F x φ y A B F y + T = F y
216 215 7 chvarvv φ y A B F y + T = F y
217 208 216 vtoclg x + T φ x + T A B F x + T + T = F x + T
218 176 201 217 sylc φ x A + T B + T F x + T + T = F x + T
219 173 195 negsubd φ x A + T B + T x + T = x T
220 219 oveq1d φ x A + T B + T x + T + T = x - T + T
221 173 195 npcand φ x A + T B + T x - T + T = x
222 220 221 eqtrd φ x A + T B + T x + T + T = x
223 222 fveq2d φ x A + T B + T F x + T + T = F x
224 218 223 eqtr3d φ x A + T B + T F x + T = F x
225 224 adantlr φ 0 < T x A + T B + T F x + T = F x
226 fveq2 j = i S j = S i
227 226 oveq1d j = i S j + T = S i + T
228 227 cbvmptv j 0 M S j + T = i 0 M S i + T
229 10 adantr φ 0 < T F :
230 10 adantr φ i 0 ..^ M F :
231 ioossre S i S i + 1
232 231 a1i φ i 0 ..^ M S i S i + 1
233 230 232 feqresmpt φ i 0 ..^ M F S i S i + 1 = x S i S i + 1 F x
234 151 158 oveq12d φ i 0 ..^ M S i S i + 1 = Q i + T Q i + 1 + T
235 141 144 145 iooshift φ i 0 ..^ M Q i + T Q i + 1 + T = w | z Q i Q i + 1 w = z + T
236 234 235 eqtrd φ i 0 ..^ M S i S i + 1 = w | z Q i Q i + 1 w = z + T
237 236 mpteq1d φ i 0 ..^ M x S i S i + 1 F x = x w | z Q i Q i + 1 w = z + T F x
238 simpll φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T φ
239 simplr φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T i 0 ..^ M
240 235 eleq2d φ i 0 ..^ M x Q i + T Q i + 1 + T x w | z Q i Q i + 1 w = z + T
241 240 biimpar φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x Q i + T Q i + 1 + T
242 141 rexrd φ i 0 ..^ M Q i *
243 242 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i *
244 144 rexrd φ i 0 ..^ M Q i + 1 *
245 244 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 *
246 elioore x Q i + T Q i + 1 + T x
247 246 adantl φ x Q i + T Q i + 1 + T x
248 5 adantr φ x Q i + T Q i + 1 + T T
249 247 248 resubcld φ x Q i + T Q i + 1 + T x T
250 249 3adant2 φ i 0 ..^ M x Q i + T Q i + 1 + T x T
251 141 recnd φ i 0 ..^ M Q i
252 64 adantr φ i 0 ..^ M T
253 251 252 pncand φ i 0 ..^ M Q i + T - T = Q i
254 253 eqcomd φ i 0 ..^ M Q i = Q i + T - T
255 254 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i = Q i + T - T
256 149 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T
257 247 3adant2 φ i 0 ..^ M x Q i + T Q i + 1 + T x
258 5 3ad2ant1 φ i 0 ..^ M x Q i + T Q i + 1 + T T
259 149 rexrd φ i 0 ..^ M Q i + T *
260 259 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T *
261 157 rexrd φ i 0 ..^ M Q i + 1 + T *
262 261 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T *
263 simp3 φ i 0 ..^ M x Q i + T Q i + 1 + T x Q i + T Q i + 1 + T
264 ioogtlb Q i + T * Q i + 1 + T * x Q i + T Q i + 1 + T Q i + T < x
265 260 262 263 264 syl3anc φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T < x
266 256 257 258 265 ltsub1dd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + T - T < x T
267 255 266 eqbrtrd φ i 0 ..^ M x Q i + T Q i + 1 + T Q i < x T
268 157 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T
269 iooltub Q i + T * Q i + 1 + T * x Q i + T Q i + 1 + T x < Q i + 1 + T
270 260 262 263 269 syl3anc φ i 0 ..^ M x Q i + T Q i + 1 + T x < Q i + 1 + T
271 257 268 258 270 ltsub1dd φ i 0 ..^ M x Q i + T Q i + 1 + T x T < Q i + 1 + T - T
272 144 recnd φ i 0 ..^ M Q i + 1
273 272 252 pncand φ i 0 ..^ M Q i + 1 + T - T = Q i + 1
274 273 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 + T - T = Q i + 1
275 271 274 breqtrd φ i 0 ..^ M x Q i + T Q i + 1 + T x T < Q i + 1
276 243 245 250 267 275 eliood φ i 0 ..^ M x Q i + T Q i + 1 + T x T Q i Q i + 1
277 238 239 241 276 syl3anc φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x T Q i Q i + 1
278 fvres x T Q i Q i + 1 F Q i Q i + 1 x T = F x T
279 277 278 syl φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T = F x T
280 238 241 249 syl2anc φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x T
281 1 3ad2ant1 φ i 0 ..^ M x Q i + T Q i + 1 + T A
282 2 3ad2ant1 φ i 0 ..^ M x Q i + T Q i + 1 + T B
283 66 eqcomd φ A = A + T - T
284 283 3ad2ant1 φ i 0 ..^ M x Q i + T Q i + 1 + T A = A + T - T
285 62 3ad2ant1 φ i 0 ..^ M x Q i + T Q i + 1 + T A + T
286 1 adantr φ i 0 ..^ M A
287 1 rexrd φ A *
288 287 adantr φ i 0 ..^ M A *
289 2 rexrd φ B *
290 289 adantr φ i 0 ..^ M B *
291 3 4 6 fourierdlem15 φ Q : 0 M A B
292 291 adantr φ i 0 ..^ M Q : 0 M A B
293 292 140 ffvelrnd φ i 0 ..^ M Q i A B
294 iccgelb A * B * Q i A B A Q i
295 288 290 293 294 syl3anc φ i 0 ..^ M A Q i
296 286 141 145 295 leadd1dd φ i 0 ..^ M A + T Q i + T
297 296 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T A + T Q i + T
298 285 256 257 297 265 lelttrd φ i 0 ..^ M x Q i + T Q i + 1 + T A + T < x
299 285 257 258 298 ltsub1dd φ i 0 ..^ M x Q i + T Q i + 1 + T A + T - T < x T
300 284 299 eqbrtrd φ i 0 ..^ M x Q i + T Q i + 1 + T A < x T
301 281 250 300 ltled φ i 0 ..^ M x Q i + T Q i + 1 + T A x T
302 144 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1
303 292 143 ffvelrnd φ i 0 ..^ M Q i + 1 A B
304 iccleub A * B * Q i + 1 A B Q i + 1 B
305 288 290 303 304 syl3anc φ i 0 ..^ M Q i + 1 B
306 305 3adant3 φ i 0 ..^ M x Q i + T Q i + 1 + T Q i + 1 B
307 250 302 282 275 306 ltletrd φ i 0 ..^ M x Q i + T Q i + 1 + T x T < B
308 250 282 307 ltled φ i 0 ..^ M x Q i + T Q i + 1 + T x T B
309 281 282 250 301 308 eliccd φ i 0 ..^ M x Q i + T Q i + 1 + T x T A B
310 238 239 241 309 syl3anc φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x T A B
311 238 310 jca φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T φ x T A B
312 eleq1 y = x T y A B x T A B
313 312 anbi2d y = x T φ y A B φ x T A B
314 oveq1 y = x T y + T = x - T + T
315 314 fveq2d y = x T F y + T = F x - T + T
316 fveq2 y = x T F y = F x T
317 315 316 eqeq12d y = x T F y + T = F y F x - T + T = F x T
318 313 317 imbi12d y = x T φ y A B F y + T = F y φ x T A B F x - T + T = F x T
319 318 216 vtoclg x T φ x T A B F x - T + T = F x T
320 280 311 319 sylc φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F x - T + T = F x T
321 241 246 syl φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T x
322 recn x x
323 322 adantl φ x x
324 64 adantr φ x T
325 323 324 npcand φ x x - T + T = x
326 325 fveq2d φ x F x - T + T = F x
327 238 321 326 syl2anc φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F x - T + T = F x
328 279 320 327 3eqtr2rd φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F x = F Q i Q i + 1 x T
329 328 mpteq2dva φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F x = x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T
330 233 237 329 3eqtrd φ i 0 ..^ M F S i S i + 1 = x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T
331 ioosscn Q i Q i + 1
332 331 a1i φ i 0 ..^ M Q i Q i + 1
333 eqeq1 w = x w = z + T x = z + T
334 333 rexbidv w = x z Q i Q i + 1 w = z + T z Q i Q i + 1 x = z + T
335 oveq1 z = y z + T = y + T
336 335 eqeq2d z = y x = z + T x = y + T
337 336 cbvrexvw z Q i Q i + 1 x = z + T y Q i Q i + 1 x = y + T
338 334 337 bitrdi w = x z Q i Q i + 1 w = z + T y Q i Q i + 1 x = y + T
339 338 cbvrabv w | z Q i Q i + 1 w = z + T = x | y Q i Q i + 1 x = y + T
340 eqid x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T = x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T
341 332 252 339 11 340 cncfshift φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T : w | z Q i Q i + 1 w = z + T cn
342 236 eqcomd φ i 0 ..^ M w | z Q i Q i + 1 w = z + T = S i S i + 1
343 342 oveq1d φ i 0 ..^ M w | z Q i Q i + 1 w = z + T cn = S i S i + 1 cn
344 341 343 eleqtrd φ i 0 ..^ M x w | z Q i Q i + 1 w = z + T F Q i Q i + 1 x T : S i S i + 1 cn
345 330 344 eqeltrd φ i 0 ..^ M F S i S i + 1 : S i S i + 1 cn
346 345 adantlr φ 0 < T i 0 ..^ M F S i S i + 1 : S i S i + 1 cn
347 ffdm F : F : dom F dom F
348 10 347 syl φ F : dom F dom F
349 348 simpld φ F : dom F
350 349 adantr φ i 0 ..^ M F : dom F
351 ioossre Q i Q i + 1
352 fdm F : dom F =
353 230 352 syl φ i 0 ..^ M dom F =
354 351 353 sseqtrrid φ i 0 ..^ M Q i Q i + 1 dom F
355 339 eqcomi x | y Q i Q i + 1 x = y + T = w | z Q i Q i + 1 w = z + T
356 232 342 353 3sstr4d φ i 0 ..^ M w | z Q i Q i + 1 w = z + T dom F
357 339 356 eqsstrrid φ i 0 ..^ M x | y Q i Q i + 1 x = y + T dom F
358 simpll φ i 0 ..^ M z Q i Q i + 1 φ
359 358 287 syl φ i 0 ..^ M z Q i Q i + 1 A *
360 358 289 syl φ i 0 ..^ M z Q i Q i + 1 B *
361 358 291 syl φ i 0 ..^ M z Q i Q i + 1 Q : 0 M A B
362 simplr φ i 0 ..^ M z Q i Q i + 1 i 0 ..^ M
363 ioossicc Q i Q i + 1 Q i Q i + 1
364 363 sseli z Q i Q i + 1 z Q i Q i + 1
365 364 adantl φ i 0 ..^ M z Q i Q i + 1 z Q i Q i + 1
366 359 360 361 362 365 fourierdlem1 φ i 0 ..^ M z Q i Q i + 1 z A B
367 eleq1 x = z x A B z A B
368 367 anbi2d x = z φ x A B φ z A B
369 oveq1 x = z x + T = z + T
370 369 fveq2d x = z F x + T = F z + T
371 fveq2 x = z F x = F z
372 370 371 eqeq12d x = z F x + T = F x F z + T = F z
373 368 372 imbi12d x = z φ x A B F x + T = F x φ z A B F z + T = F z
374 373 7 chvarvv φ z A B F z + T = F z
375 358 366 374 syl2anc φ i 0 ..^ M z Q i Q i + 1 F z + T = F z
376 350 332 354 252 355 357 375 12 limcperiod φ i 0 ..^ M R F x | y Q i Q i + 1 x = y + T lim Q i + T
377 355 342 eqtrid φ i 0 ..^ M x | y Q i Q i + 1 x = y + T = S i S i + 1
378 377 reseq2d φ i 0 ..^ M F x | y Q i Q i + 1 x = y + T = F S i S i + 1
379 151 eqcomd φ i 0 ..^ M Q i + T = S i
380 378 379 oveq12d φ i 0 ..^ M F x | y Q i Q i + 1 x = y + T lim Q i + T = F S i S i + 1 lim S i
381 376 380 eleqtrd φ i 0 ..^ M R F S i S i + 1 lim S i
382 381 adantlr φ 0 < T i 0 ..^ M R F S i S i + 1 lim S i
383 350 332 354 252 355 357 375 13 limcperiod φ i 0 ..^ M L F x | y Q i Q i + 1 x = y + T lim Q i + 1 + T
384 158 eqcomd φ i 0 ..^ M Q i + 1 + T = S i + 1
385 378 384 oveq12d φ i 0 ..^ M F x | y Q i Q i + 1 x = y + T lim Q i + 1 + T = F S i S i + 1 lim S i + 1
386 383 385 eleqtrd φ i 0 ..^ M L F S i S i + 1 lim S i + 1
387 386 adantlr φ 0 < T i 0 ..^ M L F S i S i + 1 lim S i + 1
388 eqeq1 y = x y = S i x = S i
389 eqeq1 y = x y = S i + 1 x = S i + 1
390 389 31 ifbieq2d y = x if y = S i + 1 L F y = if x = S i + 1 L F x
391 388 390 ifbieq2d y = x if y = S i R if y = S i + 1 L F y = if x = S i R if x = S i + 1 L F x
392 391 cbvmptv y S i S i + 1 if y = S i R if y = S i + 1 L F y = x S i S i + 1 if x = S i R if x = S i + 1 L F x
393 eqid x j 0 M S j + T i j 0 M S j + T i + 1 y S i S i + 1 if y = S i R if y = S i + 1 L F y x T = x j 0 M S j + T i j 0 M S j + T i + 1 y S i S i + 1 if y = S i R if y = S i + 1 L F y x T
394 79 81 82 83 86 167 225 228 229 346 382 387 392 393 fourierdlem81 φ 0 < T A + T + T B + T + T F x dx = A + T B + T F x dx
395 76 394 eqtr2d φ 0 < T A + T B + T F x dx = A B F x dx
396 51 61 395 syl2anc φ ¬ 0 < T ¬ T = 0 A + T B + T F x dx = A B F x dx
397 50 396 pm2.61dan φ ¬ 0 < T A + T B + T F x dx = A B F x dx
398 36 397 pm2.61dan φ A + T B + T F x dx = A B F x dx