Metamath Proof Explorer


Theorem fovcl

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007)

Ref Expression
Hypothesis fovcl.1 F : R × S C
Assertion fovcl A R B S A F B C

Proof

Step Hyp Ref Expression
1 fovcl.1 F : R × S C
2 ffnov F : R × S C F Fn R × S x R y S x F y C
3 2 simprbi F : R × S C x R y S x F y C
4 1 3 ax-mp x R y S x F y C
5 oveq1 x = A x F y = A F y
6 5 eleq1d x = A x F y C A F y C
7 oveq2 y = B A F y = A F B
8 7 eleq1d y = B A F y C A F B C
9 6 8 rspc2v A R B S x R y S x F y C A F B C
10 4 9 mpi A R B S A F B C