Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
fovcl
Next ⟩
eqfnov
Metamath Proof Explorer
Ascii
Unicode
Theorem
fovcl
Description:
Closure law for an operation.
(Contributed by
NM
, 19-Apr-2007)
Ref
Expression
Hypothesis
fovcl.1
⊢
F
:
R
×
S
⟶
C
Assertion
fovcl
⊢
A
∈
R
∧
B
∈
S
→
A
F
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
fovcl.1
⊢
F
:
R
×
S
⟶
C
2
ffnov
⊢
F
:
R
×
S
⟶
C
↔
F
Fn
R
×
S
∧
∀
x
∈
R
∀
y
∈
S
x
F
y
∈
C
3
2
simprbi
⊢
F
:
R
×
S
⟶
C
→
∀
x
∈
R
∀
y
∈
S
x
F
y
∈
C
4
1
3
ax-mp
⊢
∀
x
∈
R
∀
y
∈
S
x
F
y
∈
C
5
oveq1
⊢
x
=
A
→
x
F
y
=
A
F
y
6
5
eleq1d
⊢
x
=
A
→
x
F
y
∈
C
↔
A
F
y
∈
C
7
oveq2
⊢
y
=
B
→
A
F
y
=
A
F
B
8
7
eleq1d
⊢
y
=
B
→
A
F
y
∈
C
↔
A
F
B
∈
C
9
6
8
rspc2v
⊢
A
∈
R
∧
B
∈
S
→
∀
x
∈
R
∀
y
∈
S
x
F
y
∈
C
→
A
F
B
∈
C
10
4
9
mpi
⊢
A
∈
R
∧
B
∈
S
→
A
F
B
∈
C