Metamath Proof Explorer


Theorem fovcl

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypothesis fovcl.1 F : R × S C
Assertion fovcl A R B S A F B C

Proof

Step Hyp Ref Expression
1 fovcl.1 F : R × S C
2 1 a1i A R F : R × S C
3 2 fovcld A R A R B S A F B C
4 3 3anidm12 A R B S A F B C