Metamath Proof Explorer


Theorem fovrn

Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion fovrn F : R × S C A R B S A F B C

Proof

Step Hyp Ref Expression
1 opelxpi A R B S A B R × S
2 df-ov A F B = F A B
3 ffvelrn F : R × S C A B R × S F A B C
4 2 3 eqeltrid F : R × S C A B R × S A F B C
5 1 4 sylan2 F : R × S C A R B S A F B C
6 5 3impb F : R × S C A R B S A F B C