Metamath Proof Explorer


Theorem fovrnda

Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis fovrnd.1 φ F : R × S C
Assertion fovrnda φ A R B S A F B C

Proof

Step Hyp Ref Expression
1 fovrnd.1 φ F : R × S C
2 fovrn F : R × S C A R B S A F B C
3 1 2 syl3an1 φ A R B S A F B C
4 3 3expb φ A R B S A F B C