Metamath Proof Explorer


Theorem fparlem1

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem1 1 st V × V -1 x = x × V

Proof

Step Hyp Ref Expression
1 fvres y V × V 1 st V × V y = 1 st y
2 1 eqeq1d y V × V 1 st V × V y = x 1 st y = x
3 vex x V
4 3 elsn2 1 st y x 1 st y = x
5 fvex 2 nd y V
6 5 biantru 1 st y x 1 st y x 2 nd y V
7 4 6 bitr3i 1 st y = x 1 st y x 2 nd y V
8 2 7 bitrdi y V × V 1 st V × V y = x 1 st y x 2 nd y V
9 8 pm5.32i y V × V 1 st V × V y = x y V × V 1 st y x 2 nd y V
10 f1stres 1 st V × V : V × V V
11 ffn 1 st V × V : V × V V 1 st V × V Fn V × V
12 fniniseg 1 st V × V Fn V × V y 1 st V × V -1 x y V × V 1 st V × V y = x
13 10 11 12 mp2b y 1 st V × V -1 x y V × V 1 st V × V y = x
14 elxp7 y x × V y V × V 1 st y x 2 nd y V
15 9 13 14 3bitr4i y 1 st V × V -1 x y x × V
16 15 eqriv 1 st V × V -1 x = x × V