Metamath Proof Explorer


Theorem fparlem2

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem2 2 nd V × V -1 y = V × y

Proof

Step Hyp Ref Expression
1 fvres x V × V 2 nd V × V x = 2 nd x
2 1 eqeq1d x V × V 2 nd V × V x = y 2 nd x = y
3 vex y V
4 3 elsn2 2 nd x y 2 nd x = y
5 fvex 1 st x V
6 5 biantrur 2 nd x y 1 st x V 2 nd x y
7 4 6 bitr3i 2 nd x = y 1 st x V 2 nd x y
8 2 7 bitrdi x V × V 2 nd V × V x = y 1 st x V 2 nd x y
9 8 pm5.32i x V × V 2 nd V × V x = y x V × V 1 st x V 2 nd x y
10 f2ndres 2 nd V × V : V × V V
11 ffn 2 nd V × V : V × V V 2 nd V × V Fn V × V
12 fniniseg 2 nd V × V Fn V × V x 2 nd V × V -1 y x V × V 2 nd V × V x = y
13 10 11 12 mp2b x 2 nd V × V -1 y x V × V 2 nd V × V x = y
14 elxp7 x V × y x V × V 1 st x V 2 nd x y
15 9 13 14 3bitr4i x 2 nd V × V -1 y x V × y
16 15 eqriv 2 nd V × V -1 y = V × y