Metamath Proof Explorer


Theorem fparlem3

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem3 F Fn A 1 st V × V -1 F 1 st V × V = x A x × V × F x × V

Proof

Step Hyp Ref Expression
1 coiun 1 st V × V -1 x A 1 st V × V -1 x × F x = x A 1 st V × V -1 1 st V × V -1 x × F x
2 inss1 dom F ran 1 st V × V dom F
3 fndm F Fn A dom F = A
4 2 3 sseqtrid F Fn A dom F ran 1 st V × V A
5 dfco2a dom F ran 1 st V × V A F 1 st V × V = x A 1 st V × V -1 x × F x
6 4 5 syl F Fn A F 1 st V × V = x A 1 st V × V -1 x × F x
7 6 coeq2d F Fn A 1 st V × V -1 F 1 st V × V = 1 st V × V -1 x A 1 st V × V -1 x × F x
8 inss1 dom F x × x × V ran 1 st V × V dom F x × x × V
9 dmxpss dom F x × x × V F x
10 8 9 sstri dom F x × x × V ran 1 st V × V F x
11 dfco2a dom F x × x × V ran 1 st V × V F x F x × x × V 1 st V × V = y F x 1 st V × V -1 y × F x × x × V y
12 10 11 ax-mp F x × x × V 1 st V × V = y F x 1 st V × V -1 y × F x × x × V y
13 fvex F x V
14 fparlem1 1 st V × V -1 y = y × V
15 sneq y = F x y = F x
16 15 xpeq1d y = F x y × V = F x × V
17 14 16 eqtrid y = F x 1 st V × V -1 y = F x × V
18 15 imaeq2d y = F x F x × x × V y = F x × x × V F x
19 df-ima F x × x × V F x = ran F x × x × V F x
20 ssid F x F x
21 xpssres F x F x F x × x × V F x = F x × x × V
22 20 21 ax-mp F x × x × V F x = F x × x × V
23 22 rneqi ran F x × x × V F x = ran F x × x × V
24 13 snnz F x
25 rnxp F x ran F x × x × V = x × V
26 24 25 ax-mp ran F x × x × V = x × V
27 23 26 eqtri ran F x × x × V F x = x × V
28 19 27 eqtri F x × x × V F x = x × V
29 18 28 eqtrdi y = F x F x × x × V y = x × V
30 17 29 xpeq12d y = F x 1 st V × V -1 y × F x × x × V y = F x × V × x × V
31 13 30 iunxsn y F x 1 st V × V -1 y × F x × x × V y = F x × V × x × V
32 12 31 eqtri F x × x × V 1 st V × V = F x × V × x × V
33 32 cnveqi F x × x × V 1 st V × V -1 = F x × V × x × V -1
34 cnvco F x × x × V 1 st V × V -1 = 1 st V × V -1 F x × x × V -1
35 cnvxp F x × V × x × V -1 = x × V × F x × V
36 33 34 35 3eqtr3i 1 st V × V -1 F x × x × V -1 = x × V × F x × V
37 fparlem1 1 st V × V -1 x = x × V
38 37 xpeq2i F x × 1 st V × V -1 x = F x × x × V
39 fnsnfv F Fn A x A F x = F x
40 39 xpeq1d F Fn A x A F x × 1 st V × V -1 x = F x × 1 st V × V -1 x
41 38 40 eqtr3id F Fn A x A F x × x × V = F x × 1 st V × V -1 x
42 41 cnveqd F Fn A x A F x × x × V -1 = F x × 1 st V × V -1 x -1
43 cnvxp F x × 1 st V × V -1 x -1 = 1 st V × V -1 x × F x
44 42 43 eqtrdi F Fn A x A F x × x × V -1 = 1 st V × V -1 x × F x
45 44 coeq2d F Fn A x A 1 st V × V -1 F x × x × V -1 = 1 st V × V -1 1 st V × V -1 x × F x
46 36 45 eqtr3id F Fn A x A x × V × F x × V = 1 st V × V -1 1 st V × V -1 x × F x
47 46 iuneq2dv F Fn A x A x × V × F x × V = x A 1 st V × V -1 1 st V × V -1 x × F x
48 1 7 47 3eqtr4a F Fn A 1 st V × V -1 F 1 st V × V = x A x × V × F x × V