Metamath Proof Explorer


Theorem fperiodmul

Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fperiodmul.f φ F :
fperiodmul.t φ T
fperiodmul.n φ N
fperiodmul.x φ X
fperiodmul.per φ x F x + T = F x
Assertion fperiodmul φ F X + N T = F X

Proof

Step Hyp Ref Expression
1 fperiodmul.f φ F :
2 fperiodmul.t φ T
3 fperiodmul.n φ N
4 fperiodmul.x φ X
5 fperiodmul.per φ x F x + T = F x
6 1 adantr φ N 0 F :
7 2 adantr φ N 0 T
8 simpr φ N 0 N 0
9 4 adantr φ N 0 X
10 5 adantlr φ N 0 x F x + T = F x
11 6 7 8 9 10 fperiodmullem φ N 0 F X + N T = F X
12 4 recnd φ X
13 3 zcnd φ N
14 2 recnd φ T
15 13 14 mulcld φ N T
16 12 15 subnegd φ X N T = X + N T
17 13 14 mulneg1d φ -N T = N T
18 17 eqcomd φ N T = -N T
19 18 oveq2d φ X N T = X -N T
20 16 19 eqtr3d φ X + N T = X -N T
21 20 fveq2d φ F X + N T = F X -N T
22 21 adantr φ ¬ N 0 F X + N T = F X -N T
23 1 adantr φ ¬ N 0 F :
24 2 adantr φ ¬ N 0 T
25 znnn0nn N ¬ N 0 N
26 3 25 sylan φ ¬ N 0 N
27 26 nnnn0d φ ¬ N 0 N 0
28 4 adantr φ ¬ N 0 X
29 3 adantr φ ¬ N 0 N
30 29 zred φ ¬ N 0 N
31 30 renegcld φ ¬ N 0 N
32 31 24 remulcld φ ¬ N 0 -N T
33 28 32 resubcld φ ¬ N 0 X -N T
34 5 adantlr φ ¬ N 0 x F x + T = F x
35 23 24 27 33 34 fperiodmullem φ ¬ N 0 F X - -N T + -N T = F X -N T
36 28 recnd φ ¬ N 0 X
37 30 recnd φ ¬ N 0 N
38 37 negcld φ ¬ N 0 N
39 24 recnd φ ¬ N 0 T
40 38 39 mulcld φ ¬ N 0 -N T
41 36 40 npcand φ ¬ N 0 X - -N T + -N T = X
42 41 fveq2d φ ¬ N 0 F X - -N T + -N T = F X
43 22 35 42 3eqtr2d φ ¬ N 0 F X + N T = F X
44 11 43 pm2.61dan φ F X + N T = F X