Metamath Proof Explorer


Theorem fperiodmullem

Description: A function with period T is also periodic with period nonnegative multiple of T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fperiodmullem.f φ F :
fperiodmullem.t φ T
fperiodmullem.n φ N 0
fperiodmullem.x φ X
fperiodmullem.per φ x F x + T = F x
Assertion fperiodmullem φ F X + N T = F X

Proof

Step Hyp Ref Expression
1 fperiodmullem.f φ F :
2 fperiodmullem.t φ T
3 fperiodmullem.n φ N 0
4 fperiodmullem.x φ X
5 fperiodmullem.per φ x F x + T = F x
6 oveq1 n = 0 n T = 0 T
7 6 oveq2d n = 0 X + n T = X + 0 T
8 7 fveqeq2d n = 0 F X + n T = F X F X + 0 T = F X
9 8 imbi2d n = 0 φ F X + n T = F X φ F X + 0 T = F X
10 oveq1 n = m n T = m T
11 10 oveq2d n = m X + n T = X + m T
12 11 fveqeq2d n = m F X + n T = F X F X + m T = F X
13 12 imbi2d n = m φ F X + n T = F X φ F X + m T = F X
14 oveq1 n = m + 1 n T = m + 1 T
15 14 oveq2d n = m + 1 X + n T = X + m + 1 T
16 15 fveqeq2d n = m + 1 F X + n T = F X F X + m + 1 T = F X
17 16 imbi2d n = m + 1 φ F X + n T = F X φ F X + m + 1 T = F X
18 oveq1 n = N n T = N T
19 18 oveq2d n = N X + n T = X + N T
20 19 fveqeq2d n = N F X + n T = F X F X + N T = F X
21 20 imbi2d n = N φ F X + n T = F X φ F X + N T = F X
22 2 recnd φ T
23 22 mul02d φ 0 T = 0
24 23 oveq2d φ X + 0 T = X + 0
25 4 recnd φ X
26 25 addid1d φ X + 0 = X
27 24 26 eqtrd φ X + 0 T = X
28 27 fveq2d φ F X + 0 T = F X
29 simp3 m 0 φ F X + m T = F X φ φ
30 simp1 m 0 φ F X + m T = F X φ m 0
31 simpr φ F X + m T = F X φ φ
32 simpl φ F X + m T = F X φ φ F X + m T = F X
33 31 32 mpd φ F X + m T = F X φ F X + m T = F X
34 33 3adant1 m 0 φ F X + m T = F X φ F X + m T = F X
35 nn0cn m 0 m
36 35 adantl φ m 0 m
37 1cnd φ m 0 1
38 22 adantr φ m 0 T
39 36 37 38 adddird φ m 0 m + 1 T = m T + 1 T
40 39 oveq2d φ m 0 X + m + 1 T = X + m T + 1 T
41 25 adantr φ m 0 X
42 36 38 mulcld φ m 0 m T
43 37 38 mulcld φ m 0 1 T
44 41 42 43 addassd φ m 0 X + m T + 1 T = X + m T + 1 T
45 38 mulid2d φ m 0 1 T = T
46 45 oveq2d φ m 0 X + m T + 1 T = X + m T + T
47 40 44 46 3eqtr2d φ m 0 X + m + 1 T = X + m T + T
48 47 fveq2d φ m 0 F X + m + 1 T = F X + m T + T
49 48 3adant3 φ m 0 F X + m T = F X F X + m + 1 T = F X + m T + T
50 4 adantr φ m 0 X
51 nn0re m 0 m
52 51 adantl φ m 0 m
53 2 adantr φ m 0 T
54 52 53 remulcld φ m 0 m T
55 50 54 readdcld φ m 0 X + m T
56 55 ex φ m 0 X + m T
57 56 imdistani φ m 0 φ X + m T
58 eleq1 x = X + m T x X + m T
59 58 anbi2d x = X + m T φ x φ X + m T
60 fvoveq1 x = X + m T F x + T = F X + m T + T
61 fveq2 x = X + m T F x = F X + m T
62 60 61 eqeq12d x = X + m T F x + T = F x F X + m T + T = F X + m T
63 59 62 imbi12d x = X + m T φ x F x + T = F x φ X + m T F X + m T + T = F X + m T
64 63 5 vtoclg X + m T φ X + m T F X + m T + T = F X + m T
65 55 57 64 sylc φ m 0 F X + m T + T = F X + m T
66 65 3adant3 φ m 0 F X + m T = F X F X + m T + T = F X + m T
67 simp3 φ m 0 F X + m T = F X F X + m T = F X
68 49 66 67 3eqtrd φ m 0 F X + m T = F X F X + m + 1 T = F X
69 29 30 34 68 syl3anc m 0 φ F X + m T = F X φ F X + m + 1 T = F X
70 69 3exp m 0 φ F X + m T = F X φ F X + m + 1 T = F X
71 9 13 17 21 28 70 nn0ind N 0 φ F X + N T = F X
72 3 71 mpcom φ F X + N T = F X