Step |
Hyp |
Ref |
Expression |
1 |
|
fphpd.a |
|
2 |
|
fphpd.b |
|
3 |
|
fphpd.c |
|
4 |
|
domnsym |
|
5 |
4 1
|
nsyl3 |
|
6 |
|
relsdom |
|
7 |
6
|
brrelex1i |
|
8 |
1 7
|
syl |
|
9 |
8
|
adantr |
|
10 |
|
nfv |
|
11 |
|
nfcsb1v |
|
12 |
11
|
nfel1 |
|
13 |
10 12
|
nfim |
|
14 |
|
eleq1w |
|
15 |
14
|
anbi2d |
|
16 |
|
csbeq1a |
|
17 |
16
|
eleq1d |
|
18 |
15 17
|
imbi12d |
|
19 |
13 18 2
|
chvarfv |
|
20 |
19
|
ex |
|
21 |
20
|
adantr |
|
22 |
|
csbid |
|
23 |
|
vex |
|
24 |
23 3
|
csbie |
|
25 |
22 24
|
eqeq12i |
|
26 |
25
|
imbi1i |
|
27 |
26
|
2ralbii |
|
28 |
|
nfcsb1v |
|
29 |
11 28
|
nfeq |
|
30 |
|
nfv |
|
31 |
29 30
|
nfim |
|
32 |
|
nfv |
|
33 |
|
csbeq1 |
|
34 |
33
|
eqeq1d |
|
35 |
|
equequ1 |
|
36 |
34 35
|
imbi12d |
|
37 |
|
csbeq1 |
|
38 |
37
|
eqeq2d |
|
39 |
|
equequ2 |
|
40 |
38 39
|
imbi12d |
|
41 |
31 32 36 40
|
rspc2 |
|
42 |
41
|
com12 |
|
43 |
27 42
|
sylbir |
|
44 |
|
id |
|
45 |
|
csbeq1 |
|
46 |
44 45
|
impbid1 |
|
47 |
43 46
|
syl6 |
|
48 |
47
|
adantl |
|
49 |
21 48
|
dom2d |
|
50 |
9 49
|
mpd |
|
51 |
5 50
|
mtand |
|
52 |
|
ancom |
|
53 |
|
df-ne |
|
54 |
53
|
anbi1i |
|
55 |
|
pm4.61 |
|
56 |
52 54 55
|
3bitr4i |
|
57 |
56
|
rexbii |
|
58 |
|
rexnal |
|
59 |
57 58
|
bitri |
|
60 |
59
|
rexbii |
|
61 |
|
rexnal |
|
62 |
60 61
|
bitri |
|
63 |
51 62
|
sylibr |
|