Step |
Hyp |
Ref |
Expression |
1 |
|
fphpdo.1 |
|
2 |
|
fphpdo.2 |
|
3 |
|
fphpdo.3 |
|
4 |
|
fphpdo.4 |
|
5 |
|
fphpdo.5 |
|
6 |
|
fphpdo.6 |
|
7 |
4
|
fmpttd |
|
8 |
7
|
ffvelrnda |
|
9 |
|
fveq2 |
|
10 |
3 8 9
|
fphpd |
|
11 |
1
|
sselda |
|
12 |
11
|
adantrr |
|
13 |
12
|
adantr |
|
14 |
1
|
sselda |
|
15 |
14
|
adantrl |
|
16 |
15
|
adantr |
|
17 |
13 16
|
lttri2d |
|
18 |
|
simprl |
|
19 |
18
|
ad2antrr |
|
20 |
|
simprr |
|
21 |
20
|
ad2antrr |
|
22 |
|
simpr |
|
23 |
|
simplr |
|
24 |
|
breq1 |
|
25 |
|
fveqeq2 |
|
26 |
24 25
|
anbi12d |
|
27 |
|
breq2 |
|
28 |
|
fveq2 |
|
29 |
28
|
eqeq2d |
|
30 |
27 29
|
anbi12d |
|
31 |
26 30
|
rspc2ev |
|
32 |
19 21 22 23 31
|
syl112anc |
|
33 |
32
|
ex |
|
34 |
20
|
ad2antrr |
|
35 |
18
|
ad2antrr |
|
36 |
|
simpr |
|
37 |
|
simplr |
|
38 |
37
|
eqcomd |
|
39 |
|
breq1 |
|
40 |
|
fveqeq2 |
|
41 |
39 40
|
anbi12d |
|
42 |
|
breq2 |
|
43 |
|
fveq2 |
|
44 |
43
|
eqeq2d |
|
45 |
42 44
|
anbi12d |
|
46 |
41 45
|
rspc2ev |
|
47 |
34 35 36 38 46
|
syl112anc |
|
48 |
47
|
ex |
|
49 |
33 48
|
jaod |
|
50 |
|
eqid |
|
51 |
|
simplr |
|
52 |
|
eleq1w |
|
53 |
52
|
anbi2d |
|
54 |
5
|
eleq1d |
|
55 |
53 54
|
imbi12d |
|
56 |
55 4
|
chvarvv |
|
57 |
56
|
adantr |
|
58 |
50 5 51 57
|
fvmptd3 |
|
59 |
|
simpr |
|
60 |
|
eleq1w |
|
61 |
60
|
anbi2d |
|
62 |
6
|
eleq1d |
|
63 |
61 62
|
imbi12d |
|
64 |
63 4
|
chvarvv |
|
65 |
64
|
adantlr |
|
66 |
50 6 59 65
|
fvmptd3 |
|
67 |
58 66
|
eqeq12d |
|
68 |
67
|
biimpd |
|
69 |
68
|
anim2d |
|
70 |
69
|
reximdva |
|
71 |
70
|
reximdva |
|
72 |
71
|
ad2antrr |
|
73 |
49 72
|
syld |
|
74 |
17 73
|
sylbid |
|
75 |
74
|
expimpd |
|
76 |
75
|
ancomsd |
|
77 |
76
|
rexlimdvva |
|
78 |
10 77
|
mpd |
|